
NLGov API Design Rules
Logius Standard
Consultation version September 20, 2023

This version:
https://gitdocumentatie.logius.nl/publicatie/api/adr/2.0.0-rc.1

Latest published version:
https://gitdocumentatie.logius.nl/publicatie/api/adr

Latest editor's draft:
https://logius-standaarden.github.io/API-Design-Rules/

Previous version:
https://gitdocumentatie.logius.nl/publicatie/api/adr/1.0

Editors:
Frank Terpstra (Geonovum)
Jan van Gelder (Geonovum)
Alexander Green (Logius)
Martin van der Plas (Logius)

Authors:
Jasper Roes (Het Kadaster)
Joost Farla (Het Kadaster)

Participate:
GitHub Logius-standaarden/API-Design-Rules
File an issue
Commit history
Pull requests

This document is also available in these non-normative format: pdf

This document is licensed under
Creative Commons Attribution 4.0 International Public License

Abstract

This document contains a normative standard for designing APIs in the Dutch Public Sector.
The Governance of this standard is described in a separate repository and published by Logius.
This document is part of the Nederlandse API Strategie, which consists of three distinct documents.

Status of This Document

This is a proposed recommendation approved by TO. Comments regarding this document may be sent to
api@logius.nl

Lo
gi

us
 S

ta
nd

ar
d

- C
on

su
lta

tio
n

ve
rs

io
n

https://www.logius.nl/standaarden
https://gitdocumentatie.logius.nl/publicatie/api/adr/2.0.0-rc.1
https://gitdocumentatie.logius.nl/publicatie/api/adr
https://logius-standaarden.github.io/API-Design-Rules/
https://gitdocumentatie.logius.nl/publicatie/api/adr/1.0
https://www.geonovum.nl/
https://www.geonovum.nl/
https://www.logius.nl/
https://www.logius.nl/
https://www.kadaster.nl/
https://www.kadaster.nl/
https://github.com/Logius-standaarden/API-Design-Rules/
https://github.com/Logius-standaarden/API-Design-Rules/issues/
https://github.com/Logius-standaarden/API-Design-Rules/commits/
https://github.com/Logius-standaarden/API-Design-Rules/pulls/
http://localhost:8080/API-Design-Rules.pdf
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://publicatie.centrumvoorstandaarden.nl/api/adr-beheer/
https://github.com/Logius-standaarden/ADR-Beheermodel
https://www.geonovum.nl/themas/kennisplatform-apis#APIStrategie

1.
1.1
1.2
1.3
1.4
1.5

2.
2.1
2.1.1

2.1.2

3.
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

4.

A.
A.1
A.2

Table of Contents

Abstract

Status of This Document

Introduction
Goal
Status
Authors
Reading Guide
Extensions

Summary
Normative Design Rules

List of functional rules

List of technical rules

The core set of Design Rules
Resources
HTTP methods
Statelessness
Relationships
Operations
Documentation
Versioning
Transport Security
Geospatial

Glossary

References
Normative references
Informative references

This section is non-normative.

1. Introduction§

More and more governmental organizations offer REST APIs (henceforth abbreviated as APIs), in addition to
existing interfaces like SOAP and WFS. These APIs aim to be developer-friendly and easy to implement.
While this is a commendable aim, it does not shield a developer from a steep learning curve getting to know
every new API, in particular when every individual API is designed using different patterns and conventions.

This document aims to describe a widely applicable set of design rules for the unambiguous provisioning of
REST APIs. The primary goal is to offer guidance for organizations designing new APIs, with the purpose of
increasing developer experience (DX) and interoperability between APIs. Hopefully, many organizations will
adopt these design rules in their corporate API strategies and provide feedback about exceptions and
additions to subsequently improve these design rules.

This version of the design rules has been submitted to Forum Standaardisatie for inclusion on the Comply or
Explain list of mandatory standards in the Dutch Public Sector. This document originates from the document
API Strategie voor de Nederlandse Overheid, which was recently split into separate sub-documents.

Despite the fact that two authors are mentioned in the list of authors, this document is the result of a
collaborative effort by the members of the API Design Rules Working Group.

This document is part of the Nederlandse API Strategie.

The Nederlandse API Strategie consists of three layers of distinct documents.

Part Description Status Link

I

General
description of
the API
Strategy

Informative https://docs.geostandaarden.nl/api/API-Strategie/

IIa
Standard for
designing APIs

Normative https://publicatie.centrumvoorstandaarden.nl/api/adr/

1.1 Goal§

1.2 Status§

1.3 Authors§

1.4 Reading Guide§

https://docs.geostandaarden.nl/api/vv-hr-API-Strategie-20190715/
https://www.geonovum.nl/themas/kennisplatform-apis#APIStrategie
https://docs.geostandaarden.nl/api/API-Strategie/
https://publicatie.centrumvoorstandaarden.nl/api/adr/

Part Description Status Link

IIb

Extension on
the Standard
for designing
APIs

Informative https://docs.geostandaarden.nl/api/API-Strategie-ext/

Before reading this document it is advised to gain knowledge of the three documents, in particular the
architecture section of part I.

An overview of all current documents is available in this Dutch infographic:

https://docs.geostandaarden.nl/api/API-Strategie-ext/
https://docs.geostandaarden.nl/api/API-Strategie/#architectuur
https://docs.geostandaarden.nl/api/API-Strategie/#architectuur

Legenda

Verplichte
'Pas toe of leg uit'
-lijst standaarden

A
lg

em
en

e
do

cu
m

en
te

n

Inleiding
NL API Strategie

Gebruikerswensen
NL API Strategie

Architectuur
NL API Strategie

N
or

m
at

ie
ve

 d
oc

um
en

te
n API Design Rules (ADR)

Open API Specification (OAS)

NL GOV OAuth profiel

Digikoppeling REST API koppelvlak
specificatie

NL GOV OIDC profiel *

NL API Strategie
M

od
ul

en
 d

oc
um

en
te

n

GEO module

Transport Security module

API Management module

Versioning moduleAPI Access module

Signing & Encription module

Naming conventions module

JSON module

Filtering & Sorting module

Search & Customization module

Temporal module

Hypermedia module

Pagination module

Caching module

Rate limiting module

Error handling module

Delegation moduleLogging module

API Monitoring module

Discovery module

Vastgestelde algemene
documenten

Concept modules

Stabiele modules

Laatst bijgewerkt:

dd. 31-08-2023
Versie 0.7

Infographic
NL API Strategie

Nog te ontwikkelen
modules

Normatieve
kennisplatform

standaarden

Figure 1 NL API Strategie Infographic

NOTE
In addition to this (normative) document, separate modules are being written to provide a set of
extensions. These modules are all separate documents and exists in a latest editor's draft (Werkversie in
Dutch). The latest editor's draft is actively being worked on and can be found on GitHub. It contains the
most recent changes.

1.5 Extensions§

https://geonovum.github.io/KP-APIs/API-strategie-algemeen/Inleiding/
https://geonovum.github.io/KP-APIs/API-strategie-algemeen/Gebruikerswensen/
https://geonovum.github.io/KP-APIs/API-strategie-algemeen/Architectuur/
https://gitdocumentatie.logius.nl/publicatie/api/adr/
https://forumstandaardisatie.nl/open-standaarden/openapi-specification
tps://gitdocumentatie.logius.nl/publicatie/api/oauth/
https://gitdocumentatie.logius.nl/publicatie/dk/restapi/
https://logius.gitlab.io/oidc/
https://docs.geostandaarden.nl/api/API-Strategie/
https://docs.geostandaarden.nl/api/API-Strategie-mod-geo/
https://geonovum.github.io/KP-APIs/API-strategie-modules/transport-security/
https://geonovum.github.io/KP-APIs/API-strategie-modules/access-control/
https://geonovum.github.io/KP-APIs/API-strategie-modules/naming-conventions/
https://geonovum.github.io/KP-APIs/API-strategie-modules/hypermedia/
https://geonovum.github.io/KP-APIs/
https://github.com/Geonovum/KP-APIs

Design rules can be technical rules, which should be tested automatically and functional rules which should
be considerd when designing and building the api.

/core/naming-resources: Use nouns to name
resources

/core/naming-collections: Use plural nouns to name
collection resources

/core/interface-language: Define interfaces in Dutch
unless there is an official English glossary available

/core/hide-implementation: Hide irrelevant
implementation details

/core/http-safety: Adhere to HTTP safety and
idempotency semantics for operations

/core/stateless: Do not maintain session state on the
server

/core/nested-child: Use nested URIs for child
resources

/core/resource-operations: Model resource
operations as a sub-resource or dedicated resource

/core/doc-language: Publish documentation in
Dutch unless there is existing documentation in
English

/core/deprecation-schedule: Include a deprecation
schedule when deprecating features or versions

/core/transition-period: Schedule a fixed transition
period for a new major API version

/core/changelog: Publish a changelog for API
changes between versions

/core/geospatial: Apply the geospatial module for
geospatial data

2. Summary§

2.1 Normative Design Rules§

2.1.1 List of functional rules§

Functional

/core/no-trailing-slash: Leave off trailing slashes
from URIs

/core/http-methods: Only apply standard HTTP
methods

/core/doc-openapi: Use OpenAPI Specification for
documentation

/core/publish-openapi: Publish OAS document at a
standard location in JSON-format

/core/uri-version: Include the major version number
in the URI

/core/semver: Adhere to the Semantic Versioning
model when releasing API changes

/core/version-header: Return the full version
number in a response header

/core/transport-security: Apply the transport
security module

The REST architectural style is centered around the concept of a resource. A resource is the key abstraction
of information, where every piece of information is named by assigning a globally unique URI (Uniform
Resource Identifier). Resources describe things, which can vary between physical objects (e.g. a building or a
person) and more abstract concepts (e.g. a permit or an event).

/core/naming-resources: Use nouns to name resources

Statement
Resources are referred to using nouns (instead of verbs) that are relevant from the
perspective of the user of the API.

A few correct examples of nouns as part of a URI:

Gebouw

Vergunning

This is different than RPC-style APIs, where verbs are often used to perform certain
actions:

Opvragen

Registreren

2.1.2 List of technical rules§

3. The core set of Design Rules§

3.1 Resources§

Functional

Rationale
Resources describe objects not actions.

Implications
Adherence to this rule needs to be manually verified.

A resource describing a single thing is called a singular resource. Resources can also be grouped into
collections, which are resources in their own right and can typically be paged, sorted and filtered. Most often
all collection members have the same type, but this is not necessarily the case. A resource describing multiple
things is called a collection resource. Collection resources typically contain references to the underlying
singular resources.

/core/naming-collections: Use plural nouns to name collection resources

Statement
A collection resource represents multiple things.

Rationale
The path segment describing the name of the collection resource must be written in the plural
form.

Example collection resources, describing a list of things:

https://api.example.org/v1/gebouwen

https://api.example.org/v1/vergunningen

Singular resources contained within a collection resource are generally named by appending
a path segment for the identification of each individual resource.

Example singular resource, contained within a collection resource:

https://api.example.org/v1/gebouwen/3b9710c4-6614-467a-ab82-36822c

https://api.example.org/v1/vergunningen/d285e05c-6b01-45c3-92d8-5e

Singular resources that stand on their own, i.e. which are not contained within a collection
resource, must be named with a path segment that is written in the singular form.

Example singular resource describing the profile of the currently authenticated user:

https://api.example.org/v1/gebruikersprofiel

Functional

Technical

Implications
Adherence to this rule needs to be manually verified.

/core/interface-language: Define interfaces in Dutch unless there is an official English
glossary available

Statement
Resources and the underlying attributes should be defined in the Dutch language unless there
is an official English glossary available.

Rationale
The exact meaning of concepts is often lost in translation. Publishing an API for an
international audience might also be a reason to define interfaces in English. Note that
glossaries exist that define useful sets of attributes which should preferably be reused.
Examples can be found at schema.org.

Implications
Adherence to this rule needs to be manually verified.

/core/no-trailing-slash: Leave off trailing slashes from URIs

Statement
A URI must never contain a trailing slash. When requesting a resource including a trailing
slash, this must result in a 404 (not found) error response and not a redirect. This enforces
API consumers to use the correct URI.

Rationale
Leaving off trailing slashes, and not implementing a redirect, enforces API consumers to use
the correct URI. This avoids confusion and ambiguity.

URI without a trailing slash (correct):

https://api.example.org/v1/gebouwen

URI with a trailing slash (incorrect):

https://api.example.org/v1/gebouwen/

Implications
This rule is included in the automatic tests on developer.overheid.nl. The source code of the
technical test can be found here. The specific tests are published in the [ADR-Validator]
repository.

http://schema.org/docs/schemas.html
https://developer.overheid.nl/
https://gitlab.com/commonground/don/adr-validator/-/blob/v0.3.0/pkg/adr/rules.go#L213

Functional

How to test

Step 1: The API MUST meet the prerequisets to be tested. These include that an OAS
file is publicly available, parsable, all $refs are resolvable and paths are defined.

Step 2: Check if paths are present in the OpenAPI Specification.

Step 3: Loop al paths and check if it ends with a slash ("/").

Step 4: Check all paths with a get request and without parameters. They should resolve
in HTTP 404.

/core/hide-implementation: Hide irrelevant implementation details

Statement
An API should not expose implementation details of the underlying application,
development platforms/frameworks or database systems/persistence models.

Rationale

The primary motivation behind this design rule is that an API design must focus on
usability for the client, regardless of the implementation details under the hood.

The API, application and infrastructure need to be able to evolve independently to ease
the task of maintaining backwards compatibility for APIs during an agile development
process.

The API design of Convenience,- and Process API types (as described in Aanbeveling 2
of the NL API Strategie) should not be a 1-on-1 mapping of the underlying domain- or
persistence model.

The API design of a System API type (as described in Aanbeveling 2 of the NL API
Strategie) may be a mapping of the underlying persistence model.

Implications

The API should not expose information about the technical components being used,
such as development platforms/frameworks or database systems.

The API should offer client-friendly attribute names and values, while persisted data
may contain abbreviated terms or serializations which might be cumbersome for
consumption.

Although the REST architectural style does not impose a specific protocol, REST APIs are typically
implemented using HTTP [rfc7231].

3.2 HTTP methods§

https://docs.geostandaarden.nl/api/def-hr-API-Strategie-20200204/#aanbeveling-2-analyseer-welke-api-s-je-aan-moet-bieden-welke-informatievragen-wil-je-beantwoorden
https://docs.geostandaarden.nl/api/def-hr-API-Strategie-20200204/#aanbeveling-2-analyseer-welke-api-s-je-aan-moet-bieden-welke-informatievragen-wil-je-beantwoorden

Technical
/core/http-methods: Only apply standard HTTP methods

Statement
Resources MUST be retrieved or manipulated using standard HTTP methods
(GET/POST/PUT/PATCH/DELETE).

Rationale
The HTTP specifications offer a set of standard methods, where every method is designed
with explicit semantics. Adhering to the HTTP specification is crucial, since HTTP clients
and middleware applications rely on standardized characteristics.

Method Operation Description

GET Read
Retrieve a resource representation for the given
URI. Data is only retrieved and never modified.

POST Create

Create a subresource as part of a collection
resource. This operation is not relevant for singular
resources. This method can also be used for
exceptional cases.

PUT Create/update
Create a resource with the given URI or replace
(full update) a resource when the resource already
exists.

PATCH Update
Partially updates an existing resource. The request
only contains the resource modifications instead of
the full resource representation.

DELETE Delete Remove a resource with the given URI.

Implications
This rule is included in the automatic tests on developer.overheid.nl. The source code of the
technical test can be found here. The specific testscripts are published in the [ADR-
Validator] repository.

The following table shows some examples of the use of standard HTTP methods:

Request Description

GET /rijksmonumenten Retrieves a list of national monuments.

GET /rijksmonumenten/12 Retrieves an individual national monument.

POST /rijksmonumenten Creates a new national monument.

PUT /rijksmonumenten/12 Modifies national monument #12 completely.

PATCH /rijksmonumenten/12 Modifies national monument #12 partially.

DELETE /rijksmonumenten/12 Deletes national monument #12.

https://developer.overheid.nl/
https://gitlab.com/commonground/don/adr-validator/-/blob/v0.3.0/pkg/adr/rules.go#L43

Functional

NOTE

The HTTP specification [rfc7231] and the later introduced PATCH method specification
[rfc5789] offer a set of standard methods, where every method is designed with explicit
semantics. HTTP also defines other methods, e.g. HEAD, OPTIONS, TRACE, and CONNECT.
The OpenAPI Specification 3.x Path Item Object also supports these methods, except for
CONNECT.
According to RFC 7231 4.1 the GET and HEAD HTTP methods MUST be supported by the
server, all other methods are optional.
In addition to the standard HTTP methods, a server may support other optional methods as
well, e.g. PROPFIND, COPY, PURGE, VIEW, LINK, UNLINK, LOCK, UNLOCK, etc.
If an optional HTTP request method is sent to a server and the server does not support that
HTTP method for the target resource, an HTTP status code 405 Method Not Allowed shall
be returned and a list of allowed methods for the target resource shall be provided in the
Allow header in the response as stated in RFC 7231 6.5.5.

How to test

Test case 1:

Step 1: The API MUST meet the prerequisites to be tested. These include that an OAS
file is publicly available, parsable, all $refs are resolvable and paths are defined.

Step 2: Send an HTTP GET or HEAD request to any of the endpoints with a definition
of a GET operation mentioned in the OAS file. The server MUST respond with a HTTP
status code other than 405 Method Not Allowed.

Test case 2:

Step 1: The API MUST meet the prerequisites to be tested. These include that an OAS
file is publicly available, parsable, all $refs are resolvable, and paths are defined.

Step 2: Send a request to the API with an optional HTTP method that is supported by
the API. The server MUST respond with an HTTP status code other than 405 Method
Not Allowed.

Test case 3:

Step 1: The API MUST meet the prerequisites to be tested. These include that an OAS
file is publicly available, parsable, all $refs are resolvable, and paths are defined.

Step 2: Send a request to the API with an optional HTTP method that is not supported
by the API. The server MUST respond with an HTTP status code 405 Method Not
Allowed. The response MUST contain an Allow header with a list of supported
methods for the target resource.

/core/http-safety: Adhere to HTTP safety and idempotency semantics for operations

https://spec.openapis.org/oas/v3.0.3#path-item-object
https://datatracker.ietf.org/doc/html/rfc7231#section-4.1
https://datatracker.ietf.org/doc/html/rfc7231#section-6.5.5

Statement
The following table describes which HTTP methods must behave as safe and/or idempotent:

Method Safe Idempotent

GET Yes Yes

HEAD Yes Yes

OPTIONS Yes Yes

POST No No

PUT No Yes

PATCH No No

DELETE No Yes

Rationale
The HTTP protocol [rfc7231] specifies whether an HTTP method should be considered safe
and/or idempotent. These characteristics are important for clients and middleware
applications, because they should be taken into account when implementing caching and
fault tolerance strategies.

Implications
Request methods are considered safe if their defined semantics are essentially read-only; i.e.,
the client does not request, and does not expect, any state change on the origin server as a
result of applying a safe method to a target resource. A request method is considered
idempotent if the intended effect on the server of multiple identical requests with that method
is the same as the effect for a single such request.

One of the key constraints of the REST architectural style is stateless communication between client and
server. It means that every request from client to server must contain all of the information necessary to
understand the request. The server cannot take advantage of any stored session context on the server as it
didn’t memorize previous requests. Session state must therefore reside entirely on the client.

To properly understand this constraint, it's important to make a distinction between two different kinds of
state:

Session state: information about the interactions of an end user with a particular client application
within the same user session, such as the last page being viewed, the login state or form data in a multi-
Step registration process. Session state must reside entirely on the client (e.g. in the user's browser).

Resource state: information that is permanently stored on the server beyond the scope of a single user
session, such as the user's profile, a product purchase or information about a building. Resource state is
persisted on the server and must be exchanged between client and server (in both directions) using

3.3 Statelessness§

Functional

representations as part of the request or response payload. This is actually where the term
REpresentational State Transfer (REST) originates from.

NOTE

It's a misconception that there should be no state at all. The stateless communication constraint should be
seen from the server's point of view and states that the server should not be aware of any session state.

Stateless communication offers many advantages, including:

Simplicity is increased because the server doesn't have to memorize or retrieve session state while
processing requests

Scalability is improved because not having to incorporate session state across multiple requests enables
higher concurrency and performance

Observability is improved since every request can be monitored or analyzed in isolation without having
to incorporate session context from other requests

Reliability is improved because it eases the task of recovering from partial failures since the server
doesn't have to maintain, update or communicate session state. One failing request does not influence
other requests (depending on the nature of the failure of course).

/core/stateless: Do not maintain session state on the server

Statement
In the context of REST APIs, the server must not maintain or require any notion of the
functionality of the client application and the corresponding end user interactions.

Rationale
To achieve full decoupling between client and server, and to benefit from the advantages
mentioned above, no session state must reside on the server. Session state must therefore
reside entirely on the client.

Implications
Adherence to this rule needs to be manually verified.

NOTE

The client of a REST API could be a variety of applications such as a browser application, a
mobile or desktop application and even another server serving as a backend component for
another client. REST APIs should therefore be completely client-agnostic.

Resources are often interconnected by relationships. Relationships can be modelled in different ways
depending on the cardinality, semantics and more importantly, the use cases and access patterns the REST

3.4 Relationships§

Functional

API needs to support.

/core/nested-child: Use nested URIs for child resources

Statement
When having a child resource which can only exist in the context of a parent resource, the
URI should be nested.

Rationale
In this use case, the child resource does not necessarily have a top-level collection resource.
The best way to explain this design rule is by example.

When modelling resources for a news platform including the ability for users to write
comments, it might be a good strategy to model the collection resources hierarchically:

https://api.example.org/v1/articles/123/comments

The platform might also offer a photo section, where the same commenting functionality is
offered. In the same way as for articles, the corresponding sub-collection resource might be
published at:

https://api.example.org/v1/photos/456/comments

These nested sub-collection resources can be used to post a new comment (POST method) and
to retrieve a list of comments (GET method) belonging to the parent resource, i.e. the article or
photo. An important consideration is that these comments could never have existed without
the existence of the parent resource.

From the consumer's perspective, this approach makes logical sense, because the most
obvious use case is to show comments below the parent article or photo (e.g. on the same web
page) including the possibility to paginate through the comments. The process of posting a
comment is separate from the process of publishing a new article. Another client use case
might also be to show a global latest comments section in the sidebar. For this use case, an
additional resource could be provided:

https://api.example.org/v1/comments

If this would have not been a meaningful use case, this resource should not exist at all.
Because it doesn't make sense to post a new comment from a global context, this resource
would be read-only (only GET method is supported) and may possibly provide a more
compact representation than the parent-specific sub-collections.

The singular resources for comments, referenced from all 3 collections, could still be
modelled on a higher level to avoid deep nesting of URIs (which might increase complexity or
problems due to the URI length):

https://api.example.org/v1/comments/123

https://api.example.org/v1/comments/456

Although this approach might seem counterintuitive from a technical perspective (we simply
could have modelled a single /comments resource with optional filters for article and photo)
and might introduce partially redundant functionality, it makes perfect sense from the
perspective of the consumer, which increases developer experience.

Implications
Adherence to this rule needs to be manually verified.

Functional
/core/resource-operations: Model resource operations as a sub-resource or dedicated
resource

Statement
Model resource operations as a sub-resource or dedicated resource.

Rationale
There are resource operations which might not seem to fit well in the CRUD interaction
model. For example, approving of a submission or notifying a customer. Depending on the
type of the operation, there are three possible approaches:

1. Re-model the resource to incorporate extra fields supporting the particular operation.
For example, an approval operation can be modelled in a boolean attribute
goedgekeurd that can be modified by issuing a PATCH request against the resource.
Drawback of this approach is that the resource does not contain any metadata about the
operation (when and by whom was the approval given? Was the submission declined in
an earlier stage?). Furthermore, this requires a fine-grained authorization model, since
approval might require a specific role.

2. Treat the operation as a sub-resource. For example, model a sub-collection resource
/inzendingen/12/beoordelingen and add an approval or declination by issuing a
POST request. To be able to retrieve the review history (and to consistently adhere to the
REST principles), also support the GET method for this resource. The
/inzendingen/12 resource might still provide a goedgekeurd boolean attribute
(same as approach 1) which gets automatically updated on the background after adding
a review. This attribute should however be read-only.

3. In exceptional cases, the approaches above still don't offer an appropriate solution. An
example of such an operation is a global search across multiple resources. In this case,
the creation of a dedicated resource, possibly nested under an existing resource, is the
most obvious solution. Use the imperative mood of a verb, maybe even prefix it with a
underscore to distinguish these resources from regular resources. For example:
/search or /_search. Depending on the operation characteristics, GET and/or POST
method may be supported for such a resource.

Implications
Adherence to this rule needs to be manually verified.

3.5 Operations§

Technical

Functional

An API is as good as the accompanying documentation. The documentation has to be easily findable,
searchable and publicly accessible. Most developers will first read the documentation before they start
implementing. Hiding the technical documentation in PDF documents and/or behind a login creates a barrier
for both developers and search engines.

/core/doc-openapi: Use OpenAPI Specification for documentation

Statement
API documentation must be provided in the form of an OpenAPI definition document which
conforms to the OpenAPI Specification (from v3 onwards).

Rationale
The OpenAPI Specification (OAS) [OPENAPIS] defines a standard, language-agnostic
interface to RESTful APIs which allows both humans and computers to discover and
understand the capabilities of the service without access to source code, documentation, or
through network traffic inspection. When properly defined, a consumer can understand and
interact with the remote service with a minimal amount of implementation logic. API
documentation must be provided in the form of an OpenAPI definition document which
conforms to the OpenAPI Specification (from v3 onwards). As a result, a variety of tools can
be used to render the documentation (e.g. Swagger UI or ReDoc) or automate tasks such as
testing or code generation. The OAS document should provide clear descriptions and
examples.

Implications
This rule is included in the automatic tests on developer.overheid.nl. The source code of the
technical test can be found here. The specific tests are published in the [ADR-Validator]
repository.

How to test

Step 1: The API MUST meet the prerequisets to be tested. These include that an OAS
file is publicly available, parsable, all $refs are resolvable and paths are defined.

Step 2: Check the specification type.

Step 3: All references MUST be publicly resolvable, including the external references.

/core/doc-language: Publish documentation in Dutch unless there is existing
documentation in English

Statement
You should write the OAS document in Dutch.

3.6 Documentation§

https://developer.overheid.nl/
https://gitlab.com/commonground/don/adr-validator/-/blob/v0.3.0/pkg/adr/rules.go#L119

Technical

Rationale
In line with design rule /core/interface-language, the OAS document (e.g. descriptions and
examples) should be written in Dutch. If relevant, you may refer to existing documentation
written in English.

Implications
Adherence to this rule needs to be manually verified.

/core/publish-openapi: Publish OAS document at a standard location in JSON-format

Statement
To make the OAS document easy to find and to facilitate self-discovering clients, there
should be one standard location where the OAS document is available for download.

Rationale
Clients (such as Swagger UI or ReDoc) must be able to retrieve the document without
having to authenticate. Furthermore, the CORS policy for this URI must allow external
domains to read the documentation from a browser environment.

The standard location for the OAS document is a URI called openapi.json or
openapi.yaml within the base path of the API. This can be convenient, because OAS
document updates can easily become part of the CI/CD process.

At least the JSON format must be supported. When having multiple (major) versions of an
API, every API should provide its own OAS document(s).

An API having base path https://api.example.org/v1/ must publish the OAS
document at:

https://api.example.org/v1/openapi.json

Optionally, the same OAS document may be provided in YAML format:

https://api.example.org/v1/openapi.yaml

Implications
This rule is included in the automatic tests on developer.overheid.nl. The source code of the
technical test can be found here. The specific tests are published in the [ADR-Validator]
repository.

How to test

Step 1: The API MUST meet the prerequisets to be tested. These include that an OAS
file (openapi.json) is publicly available, parsable, all $refs are resolvable and paths are
defined.

https://developer.overheid.nl/
https://gitlab.com/commonground/don/adr-validator/-/blob/v0.3.0/pkg/adr/rules.go#L282

Functional

Functional

Step 2: The openapi.yaml MAY be available. If available it MUST contain yaml, be
readable and parsable.

Step 3: The openapi.yaml MUST contain the same OpenAPI Specification as the
openapi.json.

Step 4: The CORS header Access-Control-Allow-Origin MUST allow all origins.

Changes in APIs are inevitable. APIs should therefore always be versioned, facilitating the transition between
changes.

/core/deprecation-schedule: Include a deprecation schedule when deprecating features
or versions

Statement
Implement well documented and timely communicated deprecation schedules.

Rationale
Managing change is important. In general, well documented and timely communicated
deprecation schedules are the most important for API users. When deprecating features or
versions, a deprecation schedule must be published. This document should be published on a
public web page. Furthermore, active clients should be informed by e-mail once the schedule
has been updated or when versions have reached end-of-life.

Implications
Adherence to this rule needs to be manually verified.

/core/transition-period: Schedule a fixed transition period for a new major API
version

Statement
Old versions must remain available for a limited and fixed deprecation period.

Rationale
When releasing a new major API version, the old version must remain available for a limited
and fixed deprecation period. Offering a deprecation period allows clients to carefully plan
and execute the migration from the old to the new API version, as long as they do this prior
to the end of the deprecation period. A maximum of 2 major API versions may be published
concurrently.

Implications
Adherence to this rule needs to be manually verified.

3.7 Versioning§

Technical

Functional

/core/uri-version: Include the major version number in the URI

Statement
The URI of an API must include the major version number.

Rationale
The URI of an API (base path) must include the major version number, prefixed by the letter
v. This allows the exploration of multiple versions of an API in the browser. The minor and
patch version numbers are not part of the URI and may not have any impact on existing
client implementations.

An example of a base path for an API with current version 1.0.2:

https://api.example.org/v1/

version: '1.0.2'

servers:

 - description: test environment

 url: https://api.test.example.org/v1/

 - description: production environment

 url: https://api.example.org/v1/

Implications
This rule is included in the automatic tests on developer.overheid.nl. The source code of the
technical test can be found here. The specific tests are published in the [ADR-Validator]
repository.

How to test

Step 1: The base path MUST contain a version number.

Step 2: Each url of the server object of the OpenAPI Specification must include a
version number.

Step 3: The version in the OAS file must be the same as the version in the base path.

/core/changelog: Publish a changelog for API changes between versions

Statement
Publish a changelog.

Rationale
When releasing new (major, minor or patch) versions, all API changes must be documented
properly in a publicly available changelog.

https://developer.overheid.nl/
https://gitlab.com/commonground/don/adr-validator/-/blob/v0.3.0/pkg/adr/rules.go#L165

Technical

Technical

Implications
Adherence to this rule needs to be manually verified.

/core/semver: Adhere to the Semantic Versioning model when releasing API changes

Statement
Implement Semantic Versioning.

Rationale
Version numbering must follow the Semantic Versioning [SemVer] model to prevent
breaking changes when releasing new API versions. Release versions are formatted using the
major.minor.patch template (examples: 1.0.2, 1.11.0). Pre-release versions may be
denoted by appending a hyphen and a series of dot separated identifiers (examples: 1.0.2-
rc.1, 2.0.0-beta.3). When releasing a new version which contains backwards-incompatible
changes, a new major version must be released. Minor and patch releases may only contain
backwards compatible changes (e.g. the addition of an endpoint or an optional attribute).

Implications
This rule is included in the automatic tests on developer.overheid.nl. The source code of the
technical test can be found here. The specific tests are published in the [ADR-Validator]
repository.

How to test

Step 1: The API MUST meet the prerequisets to be tested. These include that an OAS
file (openapi.json) is publicly available, parsable, all $refs are resolvable and paths are
defined.

Step 2: In the open api specification the info and version object MUST be available.

Step 3: The version MUST comply with Semantic Versioning.

/core/version-header: Return the full version number in a response header

Statement
Return the API-Version header.

Rationale
Since the URI only contains the major version, it's useful to provide the full version number
in the response headers for every API call. This information could then be used for logging,
debugging or auditing purposes. In cases where an intermediate networking component
returns an error response (e.g. a reverse proxy enforcing access policies), the version number
may be omitted.

The version number must be returned in an HTTP response header named API-Version
(case-insensitive) and should not be prefixed.

https://developer.overheid.nl/
https://gitlab.com/commonground/don/adr-validator/-/blob/v0.3.0/pkg/adr/rules.go#L354

Technical

An example of an API version response header:

API-Version: 1.0.2

Implications
This rule is included in the automatic tests on developer.overheid.nl. The source code of the
technical test can be found here. The specific tests are published in the [ADR-Validator]
repository.

How to test

Step 1: A request to the base url MUST give a response and include the header "API-
Version".

Step 2: The value of the header "API-Version" MUST have a valid Semantic Versioning
number.

Transport security is essential to safeguard the confidentiality, integrity, and authenticity of data during its
transmission.

/core/transport-security: Apply the transport security module

Statement
The [Transport Security Module] MUST be applied.

Rationale
The [Transport Security Module] formalizes three rules to apply to APIs:

1. Secure connections using TLS

2. No sensitive information in URIs

3. Use CORS to control access

Furthermore, the module describes best practices for security headers, browser-based
applications, and other HTTP configurations. These best practices MUST be considered and
the considerations SHOULD be published in the API documentation. Transport security is
the baseline for REST API resources and the data concerned is a vital asset of the
government. The rules and best practices are considered the minimal security principles,
concepts and technologies to apply.

3.8 Transport Security§

https://developer.overheid.nl/
https://gitlab.com/commonground/don/adr-validator/-/blob/v0.3.0/pkg/adr/rules.go#L393

Functional

Implications
This rule is included in the automatic tests on developer.overheid.nl. The source code of the
technical test can be found here.

Geospatial data refers to information that is associated with a physical location on Earth, often expressed by
its 2D/3D coordinates.

/core/geospatial: Apply the geospatial module for geospatial data

Statement
The [Geospatial Module] MUST be applied when providing geospatial data or functionality.

Rationale
The [Geospatial Module] formalizes as set of rules regarding:

1. How to encode geospatial data in request and response payloads.

2. How resource collections can be filtered by a given bounding box.

3. How to deal with different coordinate systems (CRS).

Implications
Adherence to this rule needs to be manually verified.

Resource
A resource is the key abstraction of information, where every piece of information is identified by a
globally unique URI.

Singular resource
A singular resource is a resource describing a single thing (e.g. a building, person or event).

Collection resource
A collection resource is a resource describing multiple things (e.g. a list of buildings).

URI
A URI [rfc3986] (Uniform Resource Identifier) is a globally unique identifier for a resource.

OGC
The Open Geospatial Consortium (OGC) is a consortium of experts committed to improving access to
geospatial, or location information.

3.9 Geospatial§

4. Glossary§

https://developer.overheid.nl/
https://gitlab.com/commonground/don/adr-validator/-/blob/main/pkg/adr/rules.go
https://www.ogc.org/

[ADR-Validator]
Technical ADR Validation rule testset 0.1.0. H. Stijns. Geonovum. December 2022. URL:
https://gitlab.com/commonground/don/adr-validator/-/blob/v0.1.0/pkg/adr/rules.go

[Geospatial Module]
API Design rules Module: Geospatial. L. van den Brink, P. Bresters, P. van Genuchten, G. Mathijssen,
M. Strijker. Geonovum. 23 mei 2021. URL: https://docs.geostandaarden.nl/api/API-Strategie-mod-geo/

[OPENAPIS]
OpenAPI Specification. Darrell Miller; Jeremy Whitlock; Marsh Gardiner; Mike Ralphson; Ron
Ratovsky; Uri Sarid; Tony Tam; Jason Harmon. OpenAPI Initiative. URL: https://www.openapis.org/

[RFC2119]
Key words for use in RFCs to Indicate Requirement Levels. S. Bradner. IETF. March 1997. Best Current
Practice. URL: https://www.rfc-editor.org/rfc/rfc2119

[rfc3986]
Uniform Resource Identifier (URI): Generic Syntax. T. Berners-Lee; R. Fielding; L. Masinter. IETF.
January 2005. Internet Standard. URL: https://www.rfc-editor.org/rfc/rfc3986

[rfc7231]
Hypertext Transfer Protocol (HTTP/1.1): Semantics and Content. R. Fielding, Ed.; J. Reschke, Ed..
IETF. June 2014. Proposed Standard. URL: https://httpwg.org/specs/rfc7231.html

[RFC8174]
Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words. B. Leiba. IETF. May 2017. Best Current
Practice. URL: https://www.rfc-editor.org/rfc/rfc8174

[SemVer]
Semantic Versioning 2.0.0. T. Preston-Werner. June 2013. URL: https://semver.org

[Transport Security Module]
Transport Security Module. . Kennisplatform API's. 27 september 2023. URL:
https://geonovum.github.io/KP-APIs/API-strategie-modules/transport-security/

[rfc5789]
PATCH Method for HTTP. L. Dusseault; J. Snell. IETF. March 2010. Proposed Standard. URL:
https://httpwg.org/specs/rfc5789.html

↑

A. References§

A.1 Normative references§

A.2 Informative references§

https://gitlab.com/commonground/don/adr-validator/-/blob/v0.1.0/pkg/adr/rules.go
https://gitlab.com/commonground/don/adr-validator/-/blob/v0.1.0/pkg/adr/rules.go
https://docs.geostandaarden.nl/api/API-Strategie-mod-geo/
https://docs.geostandaarden.nl/api/API-Strategie-mod-geo/
https://www.openapis.org/
https://www.openapis.org/
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc3986
https://www.rfc-editor.org/rfc/rfc3986
https://httpwg.org/specs/rfc7231.html
https://httpwg.org/specs/rfc7231.html
https://www.rfc-editor.org/rfc/rfc8174
https://www.rfc-editor.org/rfc/rfc8174
https://semver.org/
https://semver.org/
https://geonovum.github.io/KP-APIs/API-strategie-modules/transport-security/
https://geonovum.github.io/KP-APIs/API-strategie-modules/transport-security/
https://httpwg.org/specs/rfc5789.html
https://httpwg.org/specs/rfc5789.html

