
OpenID NLGov 1.0.1
Logius Standard
Definitive version September 18, 2023

This version:
https://gitdocumentatie.logius.nl/publicatie/api/oidc/1.0.1

Latest published version:
https://gitdocumentatie.logius.nl/publicatie/api/oidc

Latest editor's draft:
https://logius-standaarden.github.io/OIDC-NLGOV/

Editors:
Remco Schaar (Logius)
Frank van Es (Logius)
Pieter Hering (Logius)
Martin van der Plas (Logius)
Alexander Green (Logius)

Authors:
Remco Schaar (Logius)
Frank van Es (Logius)
Joris Joosten (VZVZ)
Jan Geert Koops (Dictu)

Participate:
GitHub Logius-standaarden/OIDC-NLGOV
File an issue
Commit history
Pull requests

This document is also available in these non-normative format: pdf

This document is licensed under
Creative Commons Attribution 4.0 International Public License

Abstract

The OpenID Connect protocol defines an identity federation system that allows a Relying Party to
request and receive authentication and profile information about an End-User.

Lo
gi

us
 S

ta
nd

ar
d

- D
ef

in
iti

ve
 v

er
si

on

https://www.logius.nl/standaarden
https://gitdocumentatie.logius.nl/publicatie/api/oidc/1.0.1
https://gitdocumentatie.logius.nl/publicatie/api/oidc
https://logius-standaarden.github.io/OIDC-NLGOV/
https://github.com/Logius-standaarden
https://github.com/Logius-standaarden
https://github.com/Logius-standaarden
https://github.com/Logius-standaarden
https://github.com/Logius-standaarden
https://github.com/Logius-standaarden
https://github.com/Logius-standaarden
https://www.vzvz.nl/
https://www.dictu.nl/
https://github.com/Logius-standaarden/OIDC-NLGOV/
https://github.com/Logius-standaarden/OIDC-NLGOV/issues/
https://github.com/Logius-standaarden/OIDC-NLGOV/commits/
https://github.com/Logius-standaarden/OIDC-NLGOV/pulls/
http://localhost:8080/OpenID-NLGov.pdf
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode

1.
1.1
1.2
1.3

2.
2.1
2.2

3.
3.1

4.
4.1
4.1.1

4.1.2

4.1.3

4.2
4.2.1

4.2.2

4.2.3

4.3

This specification profiles the OpenID Connect protocol to increase baseline security, provide
greater interoperability, and structure deployments in a manner specifically applicable to (but not
limited to) government and public service domains in The Netherlands.

This profile builds on top of, and inherits all properties of, the NL GOV Assurance profile for
OAuth 2.0 [OAuth2.NLGov].

Status of This Document

This is the definitive version of this document. Edits resulting from consultations have been
applied.

Table of Contents

Abstract

Status of This Document

Introduction
Requirements Notation and Conventions
Terminology
Conformance

Use Case & context
Representation
Misc

Flow
Authorization Code Flow

OpenID Client profile
Client Types

Web Applications

Browser-based Applications

Native and Hybrid Applications

Authorization Endpoint
Authentication Request

Request Objects

Authentication Response Validation

Token Endpoint

4.3.1

4.3.2

4.3.3

4.3.4

4.4
4.5

5.
5.1
5.1.1

5.2
5.2.1

5.2.2

5.2.3

5.2.4

5.2.5

5.2.6

5.2.7

5.2.8

5.3
5.4
5.4.1

5.4.2

5.4.3

5.4.4

5.5

6.
6.1
6.2
6.3
6.4
6.5
6.6

7.
7.1
7.2
7.2.1

7.3
7.3.1

Client Authentication

Token Request

Token Response Validation

ID Tokens

Discovery
Registration

OpenID Provider profile
Authorization Endpoint of the Provider profile

Request Objects of the Provider profile

Token Endpoint of the Provider profile
Token Request Validation

ID Tokens of the Provider profile

Pairwise Identifiers

Representation Relationships

Authentication Context

Vectors of Trust

Access Tokens

Refresh Tokens

UserInfo Endpoint
Discovery

Discovery endpoint

Discovery document

Caching

Public keys

Dynamic Registration

User Info
Claim Interoperability
Claims Supported
Scope Profiles
Claims Request
Claims Response
Claims Metadata

Considerations
Privacy considerations
Security considerations

Algorithms

Future updates
Service Intermediation

7.3.2

7.3.3

8.
8.1
8.2

9.

10.

A.
A.1
A.2

B.
B.1
B.2

Federations

Other features

Glossary
Notices
Acknowledgements

Conformance

List of Figures

Index
Terms defined by this specification
Terms defined by reference

References
Normative references
Informative references

Government regulations for permitting users (citizens and non-citizens) online access to
government resources vary greatly from country to country. There is a strong desire to leverage
federated authentication and identity services for public access to government resources online to
enable the development of safe and innovative applications for e-government services, increase
overall account security, reduce cost, and provide reliable identity assurances from established and
trusted sources when applicable.

OpenID Connect is a protocol enabling such federated identity and authentication protocol.
OpenID Connect supports a variety of Use Cases and offers a range of features and (security)
options. This specification aims to define an OpenID Connect profile that provides Dutch
governments with a foundation for securing federated access to public services online when
applying OpenID Connect.

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD",
"SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in
this document are to be interpreted as described in [RFC2119].

1. Introduction§

1.1 Requirements Notation and Conventions§

All uses of "JSON Web Signature (JWS)" [RFC7515] and "JSON Web Encryption (JWE)"
[RFC7516] data structures in this specification utilize the JWS Compact Serialization or the JWE
Compact Serialization; the JWS JSON Serialization and the JWE JSON Serialization are not used.

This specification uses the following terms:

"Access Token", "Authorization Code", "Authorization Endpoint", "Authorization Grant",
"Authorization Server", "Client", "Client Authentication", "Client Identifier", "Client Secret",
"Grant Type", "Protected Resource", "Redirection URI", "Refresh Token", "Resource Server",
"Response Type", and "Token Endpoint" defined by 'OAuth 2.0' [RFC6749];

"Claim Name", "Claim Value", and "JSON Web Token (JWT)" defined by 'JSON Web Token
(JWT)' [RFC7519];

"Introspection Endpoint" defined by [RFC7662];

"Revocation Endpoint" defined by [RFC7009];

"Browser-based application" defined by [OAuth2.Browser-Based-Apps];

"Native app", "Hybrid app", "External user-agent", "Embedded user-agent", "In-app browser
tab", "Web-view", "Claimed 'https' scheme URI", "Private-use URI scheme" defined by
'OAuth 2.0 for Native Apps' [RFC8252];

"User-agent" defined by 'Hypertext Transfer Protocol' [RFC2616]; and

the terms defined by 'OpenID Connect Core 1.0' [OpenID.Core].

In addition to the above terminology, this profile defines the following terms:

"Representation", "Representation Relationship", "eIDAS".

Definitions for these terms as well as for the abbreviations used throughout this specification are
listed in the Glossary.

As well as sections marked as non-normative, all authoring guidelines, diagrams, examples, and
notes in this specification are non-normative. Everything else in this specification is normative.

This profile is based upon the 'International Government Assurance Profile (iGov) for OpenID
Connect 1.0' [OpenID.iGov] as published by the OpenID Foundation. It should be considered a

1.2 Terminology§

1.3 Conformance§

https://openid.net/foundation/

fork of this profile, as the iGov profile is geared more towards a United States context and this NL
GOV profile towards a Dutch context with European Union regulations applicable.

This specification defines requirements for the following components:

OpenID Connect 1.0 Relying Parties (also known as OpenID Clients, or RP)

OpenID Connect 1.0 Identity Providers (also known as OpenID Providers, IdP or OP)

The specification also defines features for interaction between these components:

Relying Party to Identity Provider

When an NL GOV-compliant component is interacting with other NL GOV-compliant components,
in any valid combination, all components MUST fully conform to the features and requirements of
this specification. All interaction with non-NL GOV components is outside the scope of this
specification.

An NL GOV-compliant OpenID Connect Identity Provider MUST support all features as described
in this specification. A general-purpose Identity Provider MAY support additional features for use
with non-NL GOV Clients.

An NL GOV-compliant OpenID Connect Identity Provider MAY also provide NL GOV-compliant
OAuth 2.0 Authorization Server functionality. In such cases, the Authorization Server MUST fully
implement the NL GOV Assurance profile for OAuth 2.0 [OAuth2.NLGov]. If an NL GOV-
compliant OpenID Connect Identity Provider does not provide NL GOV-compliant OAuth 2.0
Authorization Server services, all features related to interaction between the Authorization Server
and protected resource are OPTIONAL.

An NL GOV-compliant OpenID Connect Client MUST support all required functionality described
in this specification. A general-purpose Client library MAY support additional features for use with
non-NL GOV OpenID Connect Identity Providers.

Note that the original concept of the [OpenID.NLGov] profile was published on logius.gitlab.io
as version 1.0 in February 2021 with the title "NL GOV Assurance profile for OpenID Connect
1.0".

This profile supports several Use Cases or partial aspects thereof. Design choices within this
profile have been made with these Use Cases under consideration.

2. Use Case & context§

The generic Use Case is an End-User with the intention to consume an online service of a Service
Provider. As the service requires authentication, this triggers the authentication process.

Authentication is provided in a federated manner. In other words, a Client system is relying upon
another system, the OpenID Provider, for authentication. Either a shared central OpenID Provider
or a (distributed) network of OpenID Providers, a.k.a. a federation or scheme is being used. The
ecosystem supported by the OpenID Provider can either be a single organization (intra-
organizational) or multiple organizations (inter-organizational), through either bilateral or
multilateral agreements. In case a federation or scheme is being used, an Identity Broker may be
applicable. Although this profile allows for usage in a federation, no explicit support for
federations is currently included.

The service is offered by a (semi-)governmental or public Service Provider. The Use Cases
therefore explicitly covers Citizen-to-Government as well as Business-to-Government contexts.
Note that business-to-government is not strictly limited to businesses, these may be other
governmental organisations (inter-organizational) or internal service consumers (intra-
organisational). This profile is not limited to these contexts, nor intended to exclude Business-to-
Consumer and Business-to-Business contexts, but additional considerations may be applicable in
those contexts.

The Service Provider or OpenID Client requests either an identifier, attributes or both of an
authenticated End-User from the OpenID Provider. As target End-User audiences are diverse,
multiple types of identifiers can be supported. Supported Use Cases therefore span both identifiale
and attribute-based authentication.

From an architectual standpoint, the Use Case can utilize a Client in the form of a hosted web-
application, a mobile/native application or a browser based single-page-application (SPA). See
Section 4.1 Client Types for more details.

This profile supports several Use Cases for Representation Relationships, which apply when an
End-User intends to consume an online service on behalf of a Natural or Juridical Person (the
service consumer), where authentication and authorization is required. The End-User in these Use
Cases is a Natural Person, representing the service consumer through a Representation
Relationship. The relationship has to be formalized and may be either a direct relationship, either
voluntarily or on legal grounds, or a chain of Representation Relationships. The formalization of
these relationships is out of scope of this profile.

Example Representation Use Cases include voluntary authorization, representative assigned by
court order (guardian, administrator), statutory signatory (director, president), limited authorized

2.1 Representation§

signatory, etc.

The OpenID Connect specification [OpenID.Core] supports self-issued OpenID Connect Providers.
However, as this profile centers around (semi-)governmental and public domain Use Cases where
assurance on identity verification is virtually always required, self-issued OpenID Providers MUST
NOT be accepted by OpenID Clients under this profile.

As the Dutch identity eco-system supports multiple OpenID Providers, Identity Brokers are in
common use. Brokers relieve OpenID Clients of managing multiple connections to OpenID
Providers, but every additional step introduces security risks and concern with regards to privacy.
Among the privacy concerns is the forming of so-called privacy hotspots, points were data
collection can be concentrated. To mitigate such risks, end-to-end security is considered throughout
this profile. Controls such as signing, to assure integrity, and encryption, to strengthen
confidentiality, are encouraged to increase overall end-to-end security.

Note that future versions of this profile may support use cases where Service Intermediation is
applicable.

OpenID Connect Core specifies three paths via which authentication can be performed: the
Authorization Code Flow, the Implicit Flow and the Hybrid Flow. The flows determine how the ID
Token and Access Token are returned to the Client.

This profile requires that authentication is performed using the Authorization Code Flow, in where
all tokens are returned from the Token Endpoint.

The Implicit Flow and Hybrid Flow allow tokens to be obtained from the Authorization Endpoint,
and thereby omitting the Token endpoint. This makes them vulnerable to token leakage and token
replay and makes it impossible to cryptographically bind tokens to a certain Client.

Therefore, the Implicit Flow and Hybrid flow MUST NOT be used. Also, the IETF OAuth Working
Group is removing support for the Implicit Flow from the OAuth 2.1 specification [OAuth2.1] for
the same reasons.

2.2 Misc§

3. Flow§

The Authorization Code Flow returns an Authorization Code to the Client, which can then
exchange it for an ID Token and an Access Token directly. The flow comprises the following steps:

1. The Client sends an Authorization Request - containing the desired request parameters - to the
OpenID Provider.

2. The OpenID Provider authenticates the End-User.

3. The OpenID Provider sends the End-User back to the Client with an Authorization Code.

4. The Client requests a response using the Authorization Code at the Token Endpoint.

5. The Client receives a response that contains an ID Token and Access Token in the response
body.

6. The Client validates the ID token and retrieves Claims and Subject Identifier(s) of the
authenticated End-User.

The flow described by these steps is illustrated as follows:

Figure 1 Authorization Code Flow

3.1 Authorization Code Flow§

OAuth 2.0 defines two Client Types (confidential and public Clients) and three Client Profiles
(Web Applications, Browser / User-Agent based Applications, and Native Applications).

This profile includes specific design considerations related to security and platform capabilities for
these different Client Types and Profiles.

Note: The iGov and NL GOV Assurance profiles for OAuth 2.0 use a slightly different
segregation of Client Types: Full Clients and Native Clients act on behalf of a End-User and
Direct Access Clients act on behalf of themselves (e.g. those Clients that facilitate bulk
transfers). Direct Access Clients are out of scope for this profile; Full Clients and Native
Clients are treated as Web applications and Native applications respectively. This profile
follows the OAuth 2.0 specification [RFC6749] instead, as it allows for better provisioning of
specific security considerations specific to the different Client types and it aligns better to the
Security Best Practices for the different Client profiles.

The following design considerations apply to all Clients:

Clients MUST use 'Proof Key for Code Exchange' [RFC7636] to protect calls to the Token
Endpoint.

Clients SHOULD restrict its Client-Side script (e.g. JavaScript) execution to a set of statically
hosted scripts via a 'Content Security Policy' [CSP].

Clients SHOULD use 'Subresource Integrity' [SRI] to verify that any dependencies they
include (e.g. via a Content Delivery Network) are not unexpectedly manipulated.

Web applications are applications that run on a web server and are consumed through the user-
agent ("browser") by the End-User. Web applications are capable of securely authenticating
themselves and of maintaining the confidentiality of secrets (e.g. Client credentials and tokens) and
are therefore considered confidential Clients (OAuth 2.0 [RFC6749], Section 2.1).

4. OpenID Client profile§

4.1 Client Types§

4.1.1 Web Applications§

Browser-based applications are applications that are dynamically downloaded and executed in a
web browser that are also sometimes referred to as user-agent-based applications or single-page
applications. Browser-based applications are considered to be not capable of maintaining the
confidentiality of secrets, as they may be vulnerable to several types of attacks, including Cross-
Site Scripting (XSS), Cross Site Request Forgery (CSRF) and OAuth token theft. Browser-based
applications are considered public Clients (OAuth 2.0 [RFC6749], Section 2.1).

Browser-based applications SHOULD follow the best practices specified in
[OAuth2.Browser-Based-Apps].

Native applications are applications installed and executed on the device used by the End-User (i.e.
desktop applications, native mobile applications). Native applications can sufficiently protect
dynamically issued secrets, but are not capable of maintaining the confidentiality of secrets that are
statically included as part of an app distribution. Therefore, Native applications are considered
public Clients, except when they are provisioned per-instance secrets via mechanisms like
Dynamic Client Registration (OAuth 2.0 [RFC6749], Section 2.1).

Hybrid applications are applications implemented using web-based technology but distributed as a
native app; these are considered equivalent to native applications for the purpose of this profile.

Native applications MUST follow the best practices as specified in OAuth 2.0 for Native Apps
[RFC8252].

The use of confidential Native applications (which are provisioned per-instance secrets) is
RECOMMENDED over public Native applications, as confidential Clients provide better
means to perform secure Client Authentication.

Native applications MUST use an external user-agent or "in-app browser tab" to make
authorization requests; an "embedded user-agent" or "web-view" components MUST NOT be
used for this purpose. See 'OAuth 2.0 for Native apps' [RFC8252] for more information on the
"in-app browser tab" feature and support on various platforms.

4.1.2 Browser-based Applications§

4.1.3 Native and Hybrid Applications§

4.2 Authorization Endpoint§

The following describes the supported OpenID Connect Authorization Code Flow parameters for
use with a NL Gov compatible OpenID Provider. Some of these requirements are inherited as
specified in Section 2.1.1 of [OAuth2.NLGov].

Request Parameters:

client_id

REQUIRED. Valid OAuth 2.0 Client Identifier. MUST have the value as obtained during
registration. Identical as in [OAuth2.NLGov].

response_type

REQUIRED. MUST have value code for the Authorization Code Flow. Identical as in
[OAuth2.NLGov].

scope

REQUIRED. Indicates the access privileges being requested. MUST contain at least the value
openid and SHOULD contain a specific scope for which access is requested.

redirect_uri

REQUIRED. Indicates a valid endpoint where the Client will receive the authentication
response. MUST be an absolute HTTPS URL unless the Client is a native application
operating on a desktop device. In case of a native application on a desktop, this MAY be an
absolute HTTP URL with the literal loopback IP address and port number the Client is
listening on as hostname. MUST NOT use localhost for loopback addresses, see [RFC8252]
Sections 7.3 and 8.3. MUST exactly match one of the Redirection URI values for the Client
pre-registered at the OpenID Provider, except for the port URI component on loopback
addresses for native applications on desktops. Inter-app redirect URIs for Native applications
on mobile devices MUST use Claimed https Scheme URI Redirection, as specified in
Section 7.2 of [RFC8252].

state

REQUIRED. Unguessable random string generated by the Client, used to protect against
Cross-Site Request Forgery (CSRF, XSRF) attacks. Must contain at least 128 bits of
cryptographic random to avoid guessing. Returned to the Client in the Authentication
Response. Identical as in [OAuth2.NLGov].

nonce

4.2.1 Authentication Request§

REQUIRED. Unguessable random string generated by the Client, used to associate a Client
session with an ID Token and to protect against replay attacks. Must contain at least 128 bits
of cryptographic random to avoid guessing. Returned to the Client in the ID Token. See also
[OpenID.Core], Section 15.5.2 for implementation notes.

acr_values

OPTIONAL. Lists the acceptable LoAs for this authentication. Under this profile,
acr_values takes precedence over vtr. See also Section 5.2.3. Identical as in
[OpenID.Core].

vtr

OPTIONAL. MUST be set to a value as described in Section 6.1 of Vectors of Trust
[RFC8485]. MUST NOT be used when acr_values is set or when the acr Claim is
requested via the claims parameter. See also Section 5.2.4.

claims

OPTIONAL. This parameter is used to request specific Claims. The value is a JSON object
listing the requested Claims, as specified in section 5.5 of [OpenID.Core].

code_challenge

REQUIRED. Code challenge as in PKCE [RFC7636].

code_challenge_method

REQUIRED. MUST use the value of S256.

EXAMPLE 1
A sample request may look like:

https://idp-p.example.com/authorize?

client_id=55f9f559-2496-49d4-b6c3-351a586b7484

&nonce=cd567ed4d958042f721a7cdca557c30d

&response_type=code

&scope=openid+email

&redirect_uri=https%3A%2F%2Fclient.example.org%2Fcb

&state=481e9c0c52e751a120fd90f7f4b5a637

&acr_values=http%3a%2f%2feidas.europa.eu%2fLoA%2fsubstantial

&code_challenge=E9Melhoa2OwvFrEMTJguCHaoeK1t8URWbuGJSstw-cM

&code_challenge_method=S256

Clients MAY optionally send requests to the Authorization Endpoint using the request or
request_uri parameter as defined by OpenID Connect [OpenID.Core], section 6. Passing a
Request Object by reference using the request_uri is preferred because of browser limits and
network latency.

Request Objects MUST be signed by the Client's registered key. Request Objects MAY be encrypted
to the OpenID Provider's public key. When sending Request Objects by reference, Clients MUST
pre-register request_uri values with the OpenID Provider at registration and MUST only use
pre-registered values for request_uri.

All Clients MUST validate the following in received Authentication Responses:

state

The state response parameter MUST be present and MUST equal the state request
parameter sent in the Authentication Request.

This in line with OpenID Connect Core ([OpenID.Core], Section 3.1.2.7), which equals to OAuth
2.0 ([RFC6749], Section 4.1.2 and 10.12). Verifying the state returned in the Authorization
Response is part of CSRF mitigation measures and will help prevent attacks with late or stale
responses, among others.

Confidential Clients, as defined in Section 4.1, MUST authenticate to the OpenID Provider using
either:

a JWT assertion as defined by the 'JWT Profile for OAuth 2.0 Client Authentication and
Authorization Grants' [RFC7523] using only the private_key_jwt method defined in
[OpenID.Core]; or

mutually authenticated TLS, as specified in [RFC8705]. In case of a mutual TLS connection
(mTLS) between the Client and the server, the JWT assertion SHOULD be omitted and the

4.2.2 Request Objects§

4.2.3 Authentication Response Validation§

4.3 Token Endpoint§

4.3.1 Client Authentication§

client_id parameter MUST be included.

Public Clients MAY authenticate to the OpenID Provider. However, the OpenID Provider MUST
NOT rely on public Client Authentication for the purpose of identifying the Client.

Clients MUST NOT use more than one authentication method in each request.

The following describes the supported parameters for the Token Request. Some of these
requirements are inherited as specified in Section 2.3.1 of [OAuth2.NLGov].

The following parameters are specified:

grant_type

REQUIRED. MUST contain the value authorization_code. Identical as in
[OAuth2.NLGov].

code

REQUIRED. The value of the code parameter returned in the Authorization Response. Clients
MUST NOT use the same authorization code more than once. Identical as in
[OAuth2.NLGov].

client_assertion

REQUIRED, in case private_key_jwt is used for Client Authentication. The value of the
signed Client Authentication JWT generated as described in [OAuth2.NLGov]. The OpenID
Client MUST generate a new assertion JWT for each call to the Token Endpoint.

client_assertion_type

REQUIRED, in case client_assertion is present. MUST be set to
urn:ietf:params:oauth:client-assertion-type:jwt-bearer.

client_id

REQUIRED, in case mutually authenticated TLS is used for Client Authentication.

code_verifier

REQUIRED. Code verifier as in PKCE [RFC7636].

4.3.2 Token Request§

All Clients MUST validate the following in received Token Responses:

Follow the Token Response validation rules in [RFC6749], Sections 5.1 and 10.12.

Validate the Access Token according to [OpenID.Core], Section 3.1.3.8.

Validate the ID Token according to [OpenID.Core], Section 3.1.3.7, as well as the below
mentioned requirements for validating the ID Token.

This in line with [OpenID.Core], Section 3.1.3.5.

All Clients MUST validate the signature of an ID Token before accepting it. Validation can be done
using the public key of the issuing server, which is published in JSON Web Key (JWK) format. ID
Tokens MAY be encrypted using the appropriate key of the requesting Client.

Clients MUST verify the following in received ID tokens:

iss

The issuer Claim is the Uniform Resource Locater (URL) of the expected Issuer. Identical
as in [OpenID.iGov].

aud

The audience Claim contains the Client ID of the Client. Identical as in [OpenID.iGov].

nonce

The nonce parameter in the ID Token MUST equal the nonce request parameter sent in the
Authentication Request. This is in line with [OpenID.Core], Section 3.1.3.7.

exp, iat, nbf

The expiration, issued at, and not before timestamps for the token are within
acceptable ranges. These Claims are formatted as Unix Time Stamps (number of seconds
since 1970-01-01T00:00:00Z UTC). Values for iat and nbf MUST lie in the past and exp
MUST lie in the future; the acceptable range for how far away iat is in the past is specific to
the Client. This is in line with [OpenID.iGov].

acr

4.3.3 Token Response Validation§

4.3.4 ID Tokens§

The Level of Assurance received in the acr Claim is at least the Level of Assurance
requested. See also Section 5.2.3. This is in line with [OpenID.Core], Section 3.1.3.7.

represents

The represents Claim, if applicable, identifies the represented service consumer on behalf
of which the End-User intends to authenticate. Any Client MUST be able to process
represents Claims. As an exception, represents Claims MAY be ignored by the Client if,
and only if, it is explicitly agreed upon beforehand that no Representation will be provided.

All Clients SHOULD use OpenID Provider discovery to avoid manual configuration and risk of
mistakes.

Clients SHOULD acquire OpenID Provider metadata using either 'OpenID Connect Discovery 1.0'
([OpenID.Discovery] Section 4) or 'OAuth 2.0 Authorization Server Metadata' ([RFC8414] Section
3) via one of the Discovery endpoints provided by the OpenID Provider. See also Section 5.4.

Clients SHOULD NOT use OpenID Provider Issuer Discover using WebFinger (as described in
[OpenID.Core], Section 2) to avoid privacy issues such as leaking information to unknown
locations.

Clients SHOULD follow caching directives provided by the OpenID Provider via HTTP headers
[RFC7234] for the OpenID Provider's Discovery and jwks endpoints. This to avoid having to
unnecessarily re-retrieve these documents while getting fresh updates of these documents when
they have changed.

Clients SHOULD support signed_metadata as specified in [RFC8414] Section 2.1. In case
signed metadata is available, this MUST be used over non-signed metadata and the signature MUST
be verified prior to further utilizing any contents.

Clients MUST use the public keys obtained from the jwks endpoint to validate the signature on
tokens or to encrypt Request Objects to the OpenID Provider.

All Clients MUST register with the OpenID Provider.

Native Clients MUST either be provisioned a unique per-instance Client identifier or be registered
as public Clients by using a common Client identifier; browser-based Clients MUST be registered

4.4 Discovery§

4.5 Registration§

as public Clients.

Clients SHOULD use Dynamic Registration as per [RFC7591] to reduce manual labor and the risks
of configuration errors. Dynamic Client Registration Management Protocol [RFC7592] MAY be
used by Clients.

In case a native Client is using per-instance registration, the Client MUST use Dynamic
Registration.

For OpenID Providers the following items are applicable:

OpenID Providers MUST implement all Mandatory to Implement Features for All OpenID
Providers (Section 15.1) and all Mandatory to Implement Features for Dynamic OpenID
Providers (Section 15.2) of [OpenID.Core]. Note that these Mandatory to Implement features
include required support for the Hybrid Flow for authentication (Response Types id_token
and id_token token). This profile deviates from this requirement, as this profile
specifically forbids the use of the Hybrid Flow (see also Chapter 3).

OpenID Providers MUST support and require the use of 'Proof Key for Code Exchange'
([RFC7636]) using only the S256 verification method and a code verifier with at least 43 and
at most 128 cryptographically random characters to allow Clients to protect calls to the Token
Endpoint.

OpenID Providers MUST apply the necessary 'Cross-Origin Resource Sharing' ([CORS])
headers to allow browsers to protect requests to its endpoints and SHOULD NOT use wildcard
origins.

OpenID Providers that support Web Applications SHOULD follow the best practices specified
in [OAuth2.Browser-Based-Apps].

OpenID Providers that support Native Applications MUST follow the best practices specified
in OAuth 2.0 for Native Apps [RFC8252].

5. OpenID Provider profile§

OpenID Providers MUST accept requests containing a Request Object signed by the Client's
private key. OpenID Providers MUST validate the signature on such requests against the Client's
registered public key. OpenID Providers MUST accept Request Objects encrypted to the OpenID
Provider's public key.

OpenID Providers SHOULD accept Request Objects by reference using the request_uri
parameter. The Request Object can be either hosted by the Client or pushed to the OpenID Provider
prior to the Authentication Request. OpenID Providers MUST verify that the request_uri
parameter exactly matches one of the request_uri values for the Client pre-registered at the
OpenID Provider, with the matching performed as described in Section 6.2.1 of [RFC3986]
(Simple String Comparison).

Using Request Objects allows for Clients to create a request that is protected from tampering
through the browser, allowing for a higher security and privacy mode of operation for Clients and
applications that require it. Clients are not required to use Request Objects, but OpenID Providers
are required to support requests using them.

Note that when a Request Object is used (either passed by value or by reference), the Client
MAY send the parameters included in the Request Object duplicated in the query parameters as
well for backwards compatibility (so that the request is a valid OAuth 2.0 Authorization
Request). However, the OpenID Provider MUST only consider the parameters included in the
Request Object and ignore the duplicated query parameters.

OpenID Providers MUST validate all incoming Token Requests according to [OpenID.Core],
Section 3.1.3.2.

5.1 Authorization Endpoint of the Provider profile§

5.1.1 Request Objects of the Provider profile§

5.2 Token Endpoint of the Provider profile§

5.2.1 Token Request Validation§

In addition, OpenID Providers MUST validate the code_verifier value against the
code_challenge and code_challenge_method values specified by the Client in the
Authorization Request according to [RFC7636], Section 4.6.

All ID Tokens MUST be signed by the OpenID Provider's private signature key. ID Tokens MAY be
encrypted using the appropriate key of the requesting Client.

The ID Token MUST expire and SHOULD have an active lifetime no longer than five minutes.
Since the ID Token is consumed by the Client and not presented to remote systems, it is
RECOMMENDED that expiration times are kept as short as possible.

The Token Response includes an Access Token (which can be used to make a UserInfo request)
and ID Token (a signed and optionally encrypted JSON Web Token). This profile imposes the
following requirements on the Claims used in ID Tokens:

iss

REQUIRED. The issuer field is the Uniform Resource Locator (URL) of the expected
Issuer. Identical as in [OpenID.iGov].

aud

REQUIRED. The audience field contains the Client ID of the Client. Identical as in
[OpenID.iGov].

sub

REQUIRED. The identifier of the authenticated End-User, also known as the subject. OpenID
Providers MUST support a pairwise identifier in accordance with the OpenID Connect
specification [OpenID.Core], section 8.1. See Pairwise Identifiers on when it may be useful to
relax this requirement. Identical as in [OpenID.iGov].

sub_id_type

OPTIONAL. The type of identifier passed in the sub Claim. In order to support multiple types
of identifiers in an interoperable way, the type of identifier used for the identifier in the sub
Claim SHOULD be explicitly included. The value of the sub_id_type MUST be a URI.
Values supported by the OpenID Provider are provided via the Discovery endpoint.

acr

5.2.2 ID Tokens of the Provider profile§

OPTIONAL. The LoA the End-User was authenticated at. MUST be at least the requested
Level of Assurance value requested by the Client (either via the acr_values or claims
parameters) or - if none was requested - a Level of Assurance established through prior
agreement. See also Section 5.2.3. As eIDAS is leading in most scenarios targeted by this
profile, using the acr Claim to express the Level of Assurance is preferred over Vectors of
Trust (vot).

nonce

REQUIRED. MUST contain the nonce value that was provided in the Authentication Request.
Identical as in [OpenID.iGov].

jti

REQUIRED. A unique identifier for the token, which can be used to prevent reuse of the
token. The value of jti MUST uniquely identify the ID Token between sender and receiver
for at least 12 months.

auth_time

REQUIRED if max_age was specified in the request or when auth_time was requested as
an Essential Claim. Otherwise auth_time is OPTIONAL and SHOULD be included if the
OpenID Provider can assert an End-User's authentication intent was demonstrated. For
example, a login event where the End-User took some action to authenticate. See also Section
15.1 of [OpenID.Core].

exp, iat, nbf

REQUIRED. The expiration, issued at, and not before timestamps indicate when the
token expires, was issued and becomes valid, respectively. The expiration time for ID Tokens
is specific to the OpenID Provider. In line with [OpenID.iGov].

represents

REQUIRED in case Representation is applicable, the represents Claim provides
information about the effective authorization due to a Representation Relationship for the
End-User.

alt_sub

OPTIONAL. Describes alternative Subject Identifiers for the authenticated End-User in the
context of a specific audience. The value of alt_sub is an array of objects, each of which
MUST contain sub and aud Claims to uniquely identify the authenticated End-User and the
audience for the alternative Subject Identifier and SHOULD contain a sub_id_type Claim to
explicitly indicate the type of identifier used in the sub claim if the OpenID Provider supports
multiple types of subject identifiers.

vot

OPTIONAL. The vector value as specified in Vectors of Trust. MUST NOT be included when
acr is included. See also Section 5.2.4.

vtm

REQUIRED if vot is provided. The trustmark URI as specified in Vectors of Trust. See also
Section 5.2.4.

Other Claims MAY be included. See Claims Request below on how such Claims SHOULD be
requested by the Client to be provided by the OpenID Provider.

EXAMPLE 2

This example ID Token has been signed using the server's RSA key:

eyJhbGciOiJSUzI1NiJ9.eyJleHAiOjE0MTg2OTk0

MTIsInN1YiI6IjZXWlFQcG5ReFYiLCJzdWJfaWRfd

HlwZSI6InVybjpubC1laWQtZ2RpOjEuMDppZDpwc2

V1ZG9ueW0iLCJub25jZSI6IjE4ODYzN2IzYWYxNGE

iLCJhdWQiOlsiYzFiYzg0ZTQtNDdlZS00YjY0LWJi

NTItNWNkYTZjODFmNzg4Il0sImFsdF9zdWIiOlt7I

mF1ZCI6IjM3OWIwMjJkLWQ5ZDAtNGM0My1iN2RlLT

I5MGEwMjNlYjQ2MSIsInN1YiI6InhTSENyRm05Qkc

iLCJzdWJfaWRfdHlwZSI6InVybjpubC1laWQtZ2Rp

OjEuMDppZDpwc2V1ZG9ueW0ifV0sImlzcyI6Imh0d

HBzOi8vaWRwLXAuZXhhbXBsZS5jb20vIiwiYWNyIj

oiaHR0cDovL2VpZGFzLmV1cm9wYS5ldS9Mb0Evc3V

ic3RhbnRpYWwiLCJpYXQiOjE0MTg2OTg4MTIsImp0

aSI6ImE2NWM1NjBkLTA4NWMtNDY2ZS05N2M1LWY4N

jM5ZmNhNWVhNyIsIm5iZiI6MTQxODY5OTExMn0

Its Claims are as follows:

{

 "auth_time": 1418698782,

 "exp": 1418699412,

 "sub": "6WZQPpnQxV",

 "sub_id_type": "urn:nl-eid-gdi:1.0:id:pseudonym",

 "nonce": "188637b3af14a",

 "aud": [

 "c1bc84e4-47ee-4b64-bb52-5cda6c81f788"

],

 "alt_sub": [{

 "aud": "379b022d-d9d0-4c43-b7de-290a023eb461",

 "sub": "xSHCrFm9BG",

 "sub_id_type": "urn:nl-eid-gdi:1.0:id:pseudonym"

 }],

 "iss": "https://idp-p.example.com/",

 "acr": "http://eidas.europa.eu/LoA/substantial",

 "iat": 1418698812,

 "jti": "a65c560d-085c-466e-97c5-f8639fca5ea7",

 "nbf": 1418699112,

 }

Pairwise Subject Identifiers specified in OpenID Connect Core [OpenID.Core] Section 8 help
protect an End-User's privacy by allowing an OpenID Provider to represent a single End-User with
a different Subject Identifier (sub) for every Client the End-User connects to. This technique can
help mitigate correlation of an End-User between multiple Clients and therewith tracking of End-
Users between different sites and applications.

Use of pairwise identifiers does not prevent Clients from correlating data based on other
identifying attributes such as names, phone numbers, email addresses, document numbers, or other
attributes. However, since not all transactions require access to these attributes, but a Subject
Identifier is always required, a pairwise identifier will aid in protecting the privacy of End-Users as
they navigate the system.

OpenID Providers MUST support pairwise identifiers for cases where correlation of End-User's
activities across Clients is not appropriate. OpenID Providers MAY support public identifiers for
frameworks where public identifiers are required, or for cases where public identifiers are shared as
attributes and the framework does not have a requirement for subject anonymity.

Burgerservicenummers (BSN), Rechtspersonen en Samenwerkingsverbanden Identificatienummers
(RSIN) and Kamer van Koophandel (KvK) nummers are considered public sectoral identifiers and
therefore MUST NOT be used as Subject Identifiers in case correlation of End-User's activities
across Clients is not appropriate. In such cases, the use of Polymorphic Pseudonyms or
Polymorphic Identities is preferred.

Note that BSNs MUST only be used by Relying Parties for Services eligible for using the BSN
according to Dutch Law and that the BSN, or token containing it, SHOULD be encrypted.

In Use Cases that involve Representation Relationships, Representation Relationships are explicitly
mentioned in the form of a represents Claim, analogous to the Delegation Semantics specified
in [RFC8693].

Note: Whereas [RFC8693] lists the End-User in the act or may_act Claims and the
represented service consumer in the sub Claim, this is reversed in this profile: the End-User is
listed in the sub Claim and the represented service consumer is listed in the represents
Claim. Reason for this is to mitigate the risk that a Client that does not explicitly supports the
Representation Use Cases cannot recognize the difference between an End-User that
authenticates on behalf of himself or on behalf of someone else via Representation.

5.2.3 Pairwise Identifiers§

5.2.4 Representation Relationships§

As such, all Clients MUST process represents Claims used, in case Representation can be
applicable in the context of the OpenID Client and OpenID Provider. As an exception,
represents Claims MAY be ignored by the Client if, and only if, it is explicitly agreed upon
beforehand that no Representation will be provided.

This profile specifies Representation Relations in ID Tokens as follows:

The End-User is always identified by the sub Claim;

The represented service consumer is mentioned in the represents Claim.

In case a chain representation is applicable, the representation chain is represented as a series
of nested represents Claims with the represented service consumer listed as the deepest
nested represents Claim.

Each represents Claim MUST contain sub and iss Claims to uniquely identify the
represented party and SHOULD contain a sub_id_type Claim to explicitly indicate the type
of identifier used in the sub claim if the OpenID Provider supports multiple types of subject
identifiers.

represents Claims MAY contain additional Claims (e.g. email) to provide additional useful
information about the represented party.

Claims within the represents Claim pertain only to the identity of that party and MUST
NOT contain Claims that are not related to the represented party, such as top-level Claims
exp, nbf, and aud.

Whereas the iGov Assurance Profile for OpenID Connect [OpenID.iGov] recommends the use of
Vectors of Trust (vot) to determine the amount of trust to be placed in digital transactions, using
Authentication Context Class References (acr) instead is RECOMMENDED by this profile, due to
their better alignment to the Levels of Assurance (LoA) defined by the eIDAS standards that are
used in the European Union.

OpenID Providers SHOULD use eIDAS Level of Assurance (LoA) values for the acr Claim, but
MAY use different values if eIDAS is not applicable. The eIDAS Level of Assurance values are
defined as URIs in [eIDAS.SAML], Section 3.2.

EXAMPLE 3
A sample chain representation for a requested scope urn:uuid:a9e17a2e-d358-406d-
9d5f-ad6045f712ba may look like (note: the requested scope also includes the required
openid scope; Claims that do not add to the example are omitted for readability):

{

 "scope": "openid urn:uuid:a9e17a2e-d358-406d-9d5f-ad6045f712ba",

 /* End-User - representing the service consumer */

 "sub": "RKyLpEVr1L",

 "sub_id_type": "urn:nl-eid-gdi:1.0:id:pseudonym",

 "iss": "urn:uuid:b556992a-e233-4fdc-915a-e2b52d3cc355",

 "represents": {

 /* Intermediary in representation chain - an organization in this

 "sub": "492099595",

 "sub_id_type": "urn:nl-eid-gdi:1.0:id:RSIN",

 "iss": "urn:uuid:28e0686f-20ff-41bd-8520-57b9c68cc9a3",

 "alt_sub": {

 "sub": "27381312",

 "sub_id_type": "urn:nl-eid-gdi:1.0:id:KvKnr",

 "iss": "urn:uuid:ebc29845-d35f-4c6a-bbb2-a59fdcb1cc6b"

 }

 "represents": {

 /* service consumer - represented by the End-User */

 "sub": "4Yg8u72NxR",

 "sub_id_type": "urn:nl-eid-gdi:1.0:id:pseudonym",

 "iss": "urn:uuid:55291cc0-fd2a-4eb6-b444-5b2783e62673"

 }

 }

}

5.2.5 Authentication Context§

OpenID Providers MUST provide a Level of Assurance as acr value that is at least the requested
Level of Assurance value requested by the Client (either via the acr_values or claims
parameters) or - if none was requested - a Level of Assurance established through prior agreement.

OpenID Providers MUST NOT provide Authentication Methods References (amr), but MUST use
Authentication Context Class References (acr) instead.

Clients MAY send an vtr (Vectors of Trust Request) parameter. If both the vtr and acr_values
are in the request, the acr_values MUST take precedence and the vtr MUST be ignored.

Note: Risk Based Authentication (RBA) should be an integral part of the LoA framework that
is used by an OpenID Provider (the Identity Provider), such that the risk criteria for the
resulting authentication are at least sufficient to meet the applicable LoA. That is, an OpenID
Provider MAY apply RBA to require authentication methods with enhanced security or ease
towards more user friendly methods when allowed by evaluated risk for an authentication, as
long as the trust framework requirements are met. Selection of and criteria for any LoA
framework are, however, situation specific and beyond the scope of this profile.

OpenID Providers MAY provide vot (Vectors of Trust) and vtm (Vector Trust Mark) values in ID
Tokens only if the acr Claim is not requested by the Client (either via the acr_values or claims
parameters). More information on Vectors of Trust is provided in [RFC8485].

This profile requires an Access Token to be in JWT form. This is in line with the underlying NL
GOV Assurance profile for OAuth 2.0 [OAuth2.NLGov].

Using a JWT formatted Access Token allows any OpenID Client to consume and verify a token
without the need for introspection, thus reducing the dependency on an interaction with an external
endpoint. As a result this may reduce load and availability requirements on the OpenID Provider.
Furthermore, it provides a more uniform format over Access Token, ID Token, UserInfo response
and Introspection response.

5.2.6 Vectors of Trust§

5.2.7 Access Tokens§

Note that ID Tokens and UserInfo responses are primarily intended for the Client. The Access
Token is primarily intended for consumption by a Resource Server. The Introspection response
is intended for the requestor of an Introspection, which can be either a Client or Resource
Server. The Resource Server is typically not considered as an actor in OpenID Connect, but
OpenID Providers will often act as Authorization Servers. In the case of Service Intermediation
this is applicable by definition. This profile does not directly place any constraints on the
placement of Claims in various tokens or response messages. Claims may be placed in any of
the four tokens/response messages, unless explicitly specified otherwise. This allows for
maximum flexibility and interoperability.

OpenID Providers MAY issue Refresh Tokens to Clients; when used, Refresh Tokens MUST be
one-time-use or sender-constrained.

OpenID Providers MAY cryptographically bind Refresh Tokens to the specific Client instance (see
also [OAuth2.1], Section 6.1); other methods to create sender-constrained Refresh Tokens MAY be
applied as well.

For security reasons, Refresh Tokens that are not sender-constrained MUST be one-time-use, i.e.
with every Access Token refresh response the OpenID Provider can issue a new Refresh Token and
MUST invalidate the previous Refresh Token (see also [RFC6819], Section 5.2.2.3 and
[OAuth2.1], Section 6.1).

Refresh Tokens MUST expire if the Client has been inactive for some time, i.e., the Refresh Token
has not been used to obtain fresh Access Tokens for some time. The expiration time is at the
discretion of the OpenID Provider, but MUST NOT exceed a maximum of 6 hours, preferably
shorter.

For public Clients, no cryptographic key or Client Authentication method for binding Refresh
Tokens to a specific Client is available. Public Clients therefore MUST use one-time-use Refresh
Tokens with a limited validity, if applied.

OpenID Providers MUST support the UserInfo Endpoint and, at a minimum, the sub (subject)
Claim. It is expected that the sub Claim will remain pseudonymous in Use Cases where obtaining
personal information is not needed.

5.2.8 Refresh Tokens§

5.3 UserInfo Endpoint§

Support for a UserInfo Endpoint is important for maximum Client implementation interoperability
even if no additional End-User information is returned. Clients are not required to call the UserInfo
Endpoint, but SHOULD NOT receive an error if they do.

OpenID Providers MUST support the generation of JWT encoded responses from the UserInfo
Endpoint. Responding with unsigned JSON objects when neither signing nor encryption are
requested by the Client as part of the userinfo_signed_response_alg and
userinfo_encrypted_response_alg Client metadata parameters registered as part of Client

EXAMPLE 4
In an example transaction, the Client sends a request to the UserInfo Endpoint like the
following:

GET /userinfo HTTP/1.1

Authorization: Bearer eyJhbGciOiJSUzI1NiJ9.eyJleHAiOjE0MTg3MDI0MTIsIm

 F1ZCI6WyJjMWJjODRlNC00N2VlLTRiNjQtYmI1Mi01Y2RhNmM4MWY3ODgiXSwiaXNzIj

 iaHR0cHM6XC9cL2lkcC1wLmV4YW1wbGUuY29tXC8iLCJqdGkiOiJkM2Y3YjQ4Zi1iYzg

 LTQwZWMtYTE0MC05NzRhZjc0YzRkZTMiLCJpYXQiOjE0MTg2OTg4MTJ9i.HMz_tzZ90_

 0QZS-AXtQtvclZ7M4uDAs1WxCFxpgBfBanolW37X8h1ECrUJexbXMD6rrj_uuWEqPD73

 oWRo0rOnoKJAgbF1GhXPAYnN5pZRygWSD1a6RcmN85SxUig0H0e7drmdmRkPQgbl2wMh

 -6h2Oqw-ize4dKmykN9UX_2drXrooSxpRZqFVYX8PkCvCCBuFy2O-HPRov_SwtJMk5qj

 WMyn2I4Nu2s-R20aCA-7T5dunr0iWCkLQnVnaXMfA22RlRiU87nl21zappYb1_EHF9eP

 q3Q353cDUY7vje8m2kKXYTgc_bUAYuW-W3SMSw5UlKaHtSZ6PQICoA

Accept: application/json

Host: idp-p.example.com

Connection: Keep-Alive

And receives a document in response like the following:

HTTP/1.1 200 OK

Date: Mon, 16 Dec 2019 03:00:12 GMT

Access-Control-Allow-Origin: *

Content-Type: application/json

Content-Language: en-US

Content-Length: 333

Connection: close

{

 "sub": "6WZQPpnQxV",

 "iss": "https://idp-p.example.com",

 "given_name": "Stephen",

 "family_name": "Emeritus",

}

Registration is OPTIONAL. Signed responses MUST be signed by the OpenID Provider's signing
key, and encrypted responses MUST be encrypted with the authorized Client's public key. Please
refer to Algorithms for more information on cryptographic algorithms and keys.

The OpenID Connect Discovery [OpenID.Discovery] standard provides a standard, programmatic
way for Clients to obtain configuration details for communicating with OpenID Providers.
Discovery is an important part of building scalable federation ecosystems.

OpenID Providers under this profile MUST publish their server metadata to help minimize
configuration errors and support automation for scalable deployments.

Exposing a Discovery endpoint does NOT inherently put the OpenID Provider at risk to
attack. Endpoints and parameters specified in the Discovery document SHOULD be
considered public information regardless of the existence of the Discovery document.

Access to the Discovery document MAY be protected with existing web authentication
methods if required by the OpenID Provider. Credentials for the Discovery document are then
managed by the OpenID Provider. Support for these authentication methods is outside the
scope of this profile.

Endpoints described in the Discovery document MUST be secured in accordance with this
profile and MAY have additional controls the Provider wishes to support.

All OpenID Providers are uniquely identified by a URL known as the issuer and MUST make a
Discovery document in JSON format available at the path formed by concatenating /.well-
known/openid-configuration to the issuer and SHOULD also make this Discovery
document available at the path formed by concatenating /.well-known/oauth-
authorization-server to the issuer. OpenID Providers MAY also publish their Discovery
documents on other locations. All paths on which the Discovery document is published MUST use
the https scheme.

Note that for privacy considerations, only direct requests to the server metadata document
SHOULD be used. The WebFinger method to locate the relevant OpenID Provider and its
metadata, as described in [OpenID.Discovery] section 2, MUST NOT be supported.

5.4 Discovery§

5.4.1 Discovery endpoint§

This profile imposes the following requirements upon the Discovery document:

issuer

REQUIRED. The fully qualified Issuer URL of the OpenID Provider as defined by
[RFC8414].

authorization_endpoint

REQUIRED. The fully qualified URL of the OpenID Provider's Authorization Endpoint as
defined by [RFC6749].

token_endpoint

REQUIRED. The fully qualified URL of the OpenID Provider's Token Endpoint as defined by
[RFC6749].

userinfo_endpoint

RECOMMENDED. The fully qualified URL of the OpenID Provider's Userinfo Endpoint as
defined by [OpenID.Core].

registration_endpoint

RECOMMENDED. The fully qualified URL of the OpenID Provider's Dynamic Registration
endpoint [RFC7591].

introspection_endpoint

OPTIONAL. The fully qualified URL of the OpenID Provider's Introspection Endpoint as
defined by 'OAuth 2.0 Token Introspection' [RFC7662].

revocation_endpoint

OPTIONAL. The fully qualified URL of the OpenID Provider's Revocation Endpoint as
defined by 'OAuth 2.0 Token Revocation' [RFC7009].

jwks_uri

REQUIRED. The fully qualified URL of the OpenID Provider's public keys in JWK Set
format. These keys can be used by Clients to verify signatures on tokens and responses from
the OpenID Provider and for encrypting requests to the OpenID Provider.

scopes_supported

5.4.2 Discovery document§

REQUIRED. The list of scopes the OpenID Provider supports as defined by [RFC8414].

response_types_supported

REQUIRED. JSON array containing the list of OAuth 2.0 response_type values that the
OpenID Provider supports. In the context of this profile, the value MUST Be ['code'].

grant_types_supported

REQUIRED. JSON array containing the list of OAuth 2.0 grant_type values that the
OpenID Provider supports. In the context of this profile, the value MUST be
['authorization_code'].

claims_parameter_supported

OPTIONAL. Boolean value specifying whether the OpenID Provider supports the use of the
claims parameter, as defined by [OpenID.Discovery].

claims_supported

REQUIRED. JSON array containing the list of Claims available in the supported scopes as
defined by [OpenID.Discovery]. See Claims Supported.

claim_types_supported

OPTIONAL. JSON array containing the list of Claim types that the OpenID Provider supports.
REQUIRED when aggregated or distributed Claims are used. If omitted, the OpenID
Provider only supports normal Claims. Identical to [OpenID.Discovery].

sub_id_types_supported

OPTIONAL. JSON array containing the list of supported types of Subject Identifiers in the
sub Claim of ID Tokens. The values MUST be URIs, the exact URIs to be used are situation
specific; as an example encrypted BSNs and Pseudonyms could be specified with urn:nl-
eid-gdi:1.0:id:BSN or urn:nl-eid-gdi:1.0:id:Pseudonym respectively.

acr_values_supported

OPTIONAL. JSON array containing the list of supported Levels of Assurances, as defined by
[OpenID.Discovery]. See Authentication Context.

subject_types_supported

REQUIRED. JSON array containing the list of Subject Identifier types that this OpenID
Provider supports. Valid types include pairwise and public.

token_endpoint_auth_methods_supported

REQUIRED. JSON array containing the list of Client Authentication methods that this
OpenID Provider supports. With respect to this profile, the allowed values are
private_key_jwt, tls_client_auth, or both.

id_token_signing_alg_values_supported

REQUIRED. JSON array containing the list of JWS signing algorithms (alg values)
supported by the OpenID Provider for the ID Token to encode the Claims in a JWT. For more
information, refer to Algorithms.

id_token_encryption_alg_values_supported

OPTIONAL. JSON array containing the list of JWE encryption algorithms (alg values)
supported by the OpenID Provider for the ID Token to encrypt the Content Encryption Key
(CEK). REQUIRED when the OpenID Provider supports encryption of ID Tokens. For more
information, refer to Algorithms.

id_token_encryption_enc_values_supported

OPTIONAL. JSON array containing the list of JWE encryption algorithms (enc values)
supported by the OpenID Provider for the ID Token to encrypt the Claims in a JWT using the
CEK. REQUIRED when the OpenID Provider supports encryption of ID Tokens. For more
information, refer to Algorithms.

userinfo_signing_alg_values_supported

REQUIRED. JSON array containing the list of JWS signing algorithms (alg values)
supported by the UserInfo Endpoint to encode the Claims in a JWT. For more information,
refer to Algorithms.

userinfo_encryption_alg_values_supported

OPTIONAL. JSON array containing the list of JWE encryption algorithms (alg values)
supported by the OpenID Provider for the UserInfo Endpoint to encrypt the Content
Encryption Key (CEK). REQUIRED when the OpenID Provider supports encryption of
UserInfo responses. For more information, refer to Algorithms.

userinfo_encryption_enc_values_supported

OPTIONAL. JSON array containing the list of JWE encryption algorithms (enc values)
supported by the OpenID Provider for the UserInfo Endpoint to encrypt the Claims in a JWT
using the CEK. REQUIRED when the OpenID Provider supports encryption of UserInfo
responses. For more information, refer to Algorithms.

request_object_signing_alg_values_supported

REQUIRED. JSON array containing the list of JWS signing algorithms (alg values)
supported by the OpenID Provider for Request Objects. These algorithms are applicable for
Request Objects passed by value and passed by reference. For more information, refer to
Algorithms.

request_object_encryption_alg_values_supported

OPTIONAL. JSON array containing the list of JWE encryption algorithms (alg values)
supported by the OpenID Provider for Request Objects to encrypt the Content Encryption Key
(CEK). REQUIRED when the OpenID Provider supports encryption of UserInfo responses.
For more information, refer to Algorithms.

request_object_encryption_enc_values_supported

OPTIONAL. JSON array containing the list of JWE encryption algorithms (enc values)
supported by the OpenID Provider for Request Objects to encrypt the Claims in a JWT using
the CEK. REQUIRED when the OpenID Provider supports encryption of UserInfo responses.
For more information, refer to Algorithms.

request_uri_parameter_supported

OPTIONAL. Boolean value which specifies whether the OpenID Provider accepts Request
Objects passed by reference using the request_uri parameter. As per [OpenID.Core], the
default value is true.

require_request_uri_registration

REQUIRED and MUST have Boolean value true if the OpenID Provider accepts Request
Objects passed by reference using the request_uri parameter. OPTIONAL otherwise. This
parameter indicates that request_uri values used by the Client to send Request Objects by
reference must always be pre-registered.

signed_metadata

RECOMMENDED. A JWT, signed using JWS, containing metadata values about the OpenID
Provider as claims, as specified in [RFC8414], Section 2.1.

EXAMPLE 5
The following example shows the JSON document found at a discovery endpoint for an
OpenID Provider:

{

 "request_parameter_supported": true,

 "id_token_encryption_alg_values_supported": [

 "RSA-OAEP", "RSA-OAEP-256"

],

 "registration_endpoint": "https://idp-p.example.com/register",

 "userinfo_signing_alg_values_supported": [

 "RS256", "RS384", "RS512"

],

 "token_endpoint": "https://idp-p.example.com/token",

 "request_uri_parameter_supported": false,

 "request_object_encryption_enc_values_supported": [

 "A192CBC-HS384", "A192GCM", "A256CBC+HS512",

 "A128CBC+HS256", "A256CBC-HS512",

 "A128CBC-HS256", "A128GCM", "A256GCM"

],

 "token_endpoint_auth_methods_supported": [

 "private_key_jwt",

],

 "userinfo_encryption_alg_values_supported": [

 "RSA-OAEP", "RSA-OAEP-256"

],

 "subject_types_supported": [

 "public", "pairwise"

],

 "id_token_encryption_enc_values_supported": [

 "A192CBC-HS384", "A192GCM", "A256CBC+HS512",

 "A128CBC+HS256", "A256CBC-HS512", "A128CBC-HS256",

 "A128GCM", "A256GCM"

],

 "claims_parameter_supported": false,

 "jwks_uri": "https://idp-p.example.com/jwk",

 "id_token_signing_alg_values_supported": [

 "RS256", "RS384", "RS512"

],

 "authorization_endpoint": "https://idp-p.example.com/authorize",

 "require_request_uri_registration": false,

 "introspection_endpoint": "https://idp-p.example.com/introspect",

 "request_object_encryption_alg_values_supported": [

 "RSA-OAEP", "RSA-OAEP-256"

],

 "service_documentation": "https://idp-p.example.com/about",

It is RECOMMENDED that OpenID Providers provide caching directives through HTTP headers
for the Discovery endpoint and the jwks_uri endpoint and make the cache valid for at least one
week. OpenID Providers SHOULD document their change procedure. In order to support
automated transitions to configuration updates, OpenID Providers SHOULD only make non-
breaking changes and retain backward compatibility when possible. It is RECOMMENDED that

 "response_types_supported": [

 "code", "token"

],

 "token_endpoint_auth_signing_alg_values_supported": [

 "RS256", "RS384", "RS512"

],

 "revocation_endpoint": "https://idp-p.example.com/revoke",

 "request_object_signing_alg_values_supported": [

 "HS256", "HS384", "HS512", "RS256", "RS384", "RS512"

],

 "claim_types_supported": [

 "normal"

],

 "grant_types_supported": [

 "authorization_code",

],

 "scopes_supported": [

 "profile", "openid", "doc"

],

 "userinfo_endpoint": "https://idp-p.example.com/userinfo",

 "userinfo_encryption_enc_values_supported": [

 "A192CBC-HS384", "A192GCM", "A256CBC+HS512","A128CBC+HS256",

 "A256CBC-HS512", "A128CBC-HS256", "A128GCM", "A256GCM"

],

 "op_tos_uri": "https://idp-p.example.com/about",

 "issuer": "https://idp-p.example.com/",

 "op_policy_uri": "https://idp-p.example.com/about",

 "claims_supported": [

 "sub", "name", "vot", "acr"

],

 "acr_values_supported" [

 "http://eidas.europa.eu/LoA/substantial",

 "http://eidas.europa.eu/LoA/high"

]

}

5.4.3 Caching§

OpenID Providers monitor usage of outdated configuration options used by any OpenID Client and
actively work with their administrators to update configurations. The above on caching and
changes MUST be applied to the jwks_uri containing the OpenID Provider's key set as well.

The OpenID Provider MUST provide its public keys in JWK Set format, such as the following
example JWK Set containing a PKIoverheid certificate chain and its 2048-bit RSA key (example
certificates abbreviated):

5.4.4 Public keys§

In case PKIoverheid certificates are used, the certificate and entire certificate chain up until the root
certificate MUST be included as either an x5c or as x5u parameter, according to [RFC7517]
Sections 4.6 and 4.7. Parties SHOULD support the inclusion of the certificate chain as x5c
parameter, for maximum interoperability. Parties MAY agree to use x5u, for instance for
communication within specific environments.

EXAMPLE 6

{

 "keys": [

 {

 "alg": "RS256",

 "e": "AQAB",

 "n": "o80vbR0ZfMhjZWfqwPUGNkcIeUcweFyzB2S2T-hje83IOVct8gVg9Fx

 vHPK1ReEW3-p7-A8GNcLAuFP_8jPhiL6LyJC3F10aV9KPQFF-w6Eq6V

 tpEgYSfzvFegNiPtpMWd7C43EDwjQ-GrXMVCLrBYxZC-P1ShyxVBOze

 R_5MTC0JGiDTecr_2YT6o_3aE2SIJu4iNPgGh9MnyxdBo0Uf0TmrqEI

 abquXA1-V8iUihwfI8qjf3EujkYi7gXXelIo4_gipQYNjr4DBNl

 E0__RI0kDU-27mb6esswnP2WgHZQPsk779fTcNDBIcYgyLujlcUATEq

 fCaPDNp00J6AbY6w",

 "kty": "RSA",

 "kid": "rsa-PKIo",

 "x5c": [

 "MIIE3jCCA8agAwIBAgICAwEwDQYJKoZIhvcNAQEFBQAwYzELMAkGA

 1UEBhMCVVMxITAfBgNVBAoTGFRoZSBHbyBEYWRkeSBHcm91cCwgSW5

 jLjExMC8GA1UECxMoR2[...]TVSzGh6O1mawGhId/dQb8vxRMDsxux

 N89txJx9OjxUUAiKEngHUuHqDTMBqLdElrRhjZkAzVvb3du6/KFUJh

 eqwNTrZEjYx8WnM25sgVjOuH0aBsXBTWVU+4=",

 "MIIE+zCCBGSgAwIBAgICAQ0wDQYJKoZIhvcNAQEFBQAwgbsxJDAiB

 gNVBAcTG1ZhbGlDZXJ0IFZhbGlkYXRpb24gTmV0d29yazEXMBUGA1U

 EChMOVmFsaUNlcnQsIE[...]luYAzBgNVBAsTLFZhbGlDZXJ0IENsY

 XNzIDIgUG9saWN5IFZhbGlkYXRpb24gQXV0aG9yaXR5MSEwHwYDVQQ

 DExhodHRwOjZXRn453HWkrugp++85j09VZw==",

 "MIIC5zCCAlACAQEwDQYJKoZIhvcNAQEFBQAwgbsxJDAiBgNVBAcTG

 1ZhbGlDZXJ0IFZhbGlkYXRpb24gTmV0d29yazEXMBUGA1UEChMOVmF

 saUNlcnQsIEluYy4xNT[...]AzBgNVBAsTLFZhbGlDZXJ0IENsYXNz

 IDIgUG9saWN5IFZhbGlkYXRpb24gQXV0aMtsq2azSiGM5bUMMj4Qss

 xsodyamEwCW/POuZ6lcg5Ktz885hZo+L7tdEy8W9ViH0Pd"

],

 "use": "sig",

 }

]

}

The OpenID Provider SHOULD utilize the approaches described in [OpenID.Core], Sections
10.1.1 (signing keys) and 10.2.1 (encryption keys), to facilitate rotation of public keys.

Please refer to Algorithms for more information on eligible cryptographic methods and keys that
can be used by OpenID Providers.

If the OpenID Provider is acting as an NL-Gov OAuth Authorization Server [OAuth2.NLGov],
then Dynamic Registration MUST be supported in accordance with Section 3.1.3 of that
specification.

Dynamic Registration MUST also be supported in combination with per-instance provisioning of
secrets when registering Native Applications as confidential Clients.

In other cases, particularly when dealing with Browser-based applications or Native Apps,
Dynamic Registration SHOULD be supported in accordance with the NL GOV Assurance profile
for OAuth 2.0 [OAuth2.NLGov].

This profile imposes the following requirements upon the Client Registration request:

Initial access tokens

In cases where the OpenID Provider limits the parties that are allowed to register Clients using
Dynamic Registration (i.e. when open registration is not applicable), the use of an initial
access token in the form of an OAuth2 Bearer token using the Authorization HTTP header
[RFC6750] is REQUIRED for making Client Registration requests. In cases where open
registration is applicable, the use of an initial access token is OPTIONAL.

redirect_uris

REQUIRED. Array of Redirection URI values used by the Client. MUST be absolute HTTPS
URLs. One of these registered Redirection URI values MUST exactly match the
redirect_uri parameter value used in each Authorization Request.

The only exception is when the Client is a Native Application operating on a desktop device
and is exclusively registered as such. In such cases:

the redirect_uri MAY contain absolute HTTP URLs with the literal loopback IP addresses
and port numbers the Client is listening on as hostnames. MUST NOT use localhost as
hostname for the loopback address, see [RFC8252] Sections 7.3 and 8.3; and

even though the port number is part of the registered redirect_uri, the OpenID Provider
MUST allow any port to be specified in the Authorization Request for loopback IP redirect

5.5 Dynamic Registration§

URIs.

jwks_uri or jwks

Clients SHOULD reference their JSON Web Key (JWK) Set via the jwks_uri parameter
rather than passing their JWK Set document by value using the jwks parameter, as it allows
for easier key rotation. Also, the jwks and jwks_uri parameters MUST NOT both be present
in the same request.

subject_type

For cases where correlation of End-User's activities across Clients is not appropriate, the
subject_type parameter MUST be set to pairwise. In other cases, the use of pairwise is
RECOMMENDED unless the use of public identifiers is required.

request_uris

Array of request_uri values that are pre-registered by the Client for use at the OpenID
Provider. Clients that make Authentication Requests using the request_uri parameter,
MUST only do so via pre-registered request_uri values.

Section 2 of [OpenID.Dynamic-Registration] lists all Client Metadata values that are used by
OpenID Connect. Note that additional parameters are defined in OAuth 2.0 Dynamic Client
Registration Protocol ([RFC7591]) can be relevant as well and MAY be used.

Please refer to Algorithms for more information on eligible cryptographic methods and keys that
can be used when registering a Client.

The availability, quality and reliability of an individual's identity attributes will vary greatly across
jurisdictions and Provider systems. The following recommendations ensure maximum cross-
jurisdictional interoperability, while setting Client expectations on the type of data they may
acquire.

As per Section 5.1.2 of [OpenID.Core], Claim names SHOULD be collision-resistant. It is
RECOMMENDED to use domain name based URIs as attribute names.

EXAMPLE 7
An example of a Client registration request:

POST /connect/register HTTP/1.1

Content-Type: application/json

Accept: application/json

Host: server.example.com

Authorization: Bearer eyJhbGciOiJSUzI1NiJ9.eyJ ...

{

 "application_type": "web",

 "redirect_uris":

 ["https://client.example.org/callback",

 "https://client.example.org/callback2"],

 "client_name": "My Example",

 "subject_type": "pairwise",

 "sector_identifier_uri":

 "https://other.example.net/file_of_redirect_uris.json",

 "token_endpoint_auth_method": "client_secret_basic",

 "jwks_uri": "https://client.example.org/my_public_keys.jwks",

 "userinfo_encrypted_response_alg": "RSA1_5",

 "userinfo_encrypted_response_enc": "A128CBC-HS256",

 "contacts": ["mary@example.org"],

}

6. User Info§

6.1 Claim Interoperability§

[OpenID.Core] Section 5.1 specifies a list of standard Claims. In a Dutch governmental context,
attribute Claims are commonly registered in the BRP (Basis Registratie Personen, the Dutch
citizen registry), as defined in [LO.GBA]. Note that some of the standard Claims of OpenID
Connect do not map directly or correctly with BRP attributes. BRP attributes SHOULD be prefered
over OpenID Connect claims for attributes. Additionally, usage of, or interoperability with, the

ISA2 core vocabularies is RECOMMENDED.

Discovery requires including the claims_supported field, which defines the Claims a Client
MAY expect to receive for the supported scopes. OpenID Providers MUST return Claims on a best
effort basis. However, an OpenID Provider asserting it can provide an End-User Claim does not
imply that this data is available for all its End-Users: Clients MUST be prepared to receive partial
data. OpenID Providers MAY return Claims outside of the claims_supported list, but they
MUST still ensure that the extra Claims to not violate the privacy policies set out by the trust
framework the Provider supports. The OpenID Provider MUST ensure to comply with applicable
privacy legislation (e.g. informed consent as per GDPR) at all times.

Note that when Representation is supported, the OpenID Provider MUST include represents
in the list of supported Claims and MAY include nested Claims inside the represents Claim.

In the interests of data minimization balanced with the requirement to successfully identify the
individual signing in to a service, the default OpenID Connect scope profiles to request Claims
([OpenID.Core] Section 5.4) may not be appropriate.

Matching of the identity assertion based on Claims to a local identifier or account related to the
individual identity at a Level of Assurance is a requirement where the government in question is
not able to provide a single identifier for all citizens based on an authoritative register of citizens.

The requirement for matching is also of importance where a cross-border or cross-jurisdiction
authentication is required and therefore the availability of a single identifier (e.g. social security
number) cannot be guaranteed for the individual wishing to authenticate.

However, in the Netherlands the BSN is, as a common identifier for citizens, available to BSN-
eligible organizations. Nationwide interoperable pseudonyms per OpenID Client for non-BSN-
eligible organizations exist as well.

6.2 Claims Supported§

6.3 Scope Profiles§

https://openid.net/specs/openid-connect-core-1_0.html#ScopeClaims

The default profile scope of OpenID Connect is very wide, which is undesired from a privacy
perspective. As such, the profile scope SHOULD NOT be used.

Note that the doc profile described in the iGov profile for OpenID Connect [OpenID.iGov] is
not in common use in the Netherlands and therefore not included in this profile.

OpenID Core Section 5.5 [OpenID.Core] defines a method for a Client to request specific Claims
in the UserInfo object or ID Token. OpenID Providers MUST support this claims parameter in the
interest of data minimization - that is, the Provider only returns information on the subject the
Client specifically asks for, and does not volunteer additional information about the subject.

Clients requesting the profile scope MAY provide a claims request parameter. If the Claims
request is omitted, the OpenID Provider SHOULD provide a default Claims set that it has available
for the subject, in accordance with any policies set out by the trust framework the Provider
supports.

Note: Clients SHOULD NOT request the profile scope, as described in the previous section.

Response to a UserInfo request MUST match the scope and Claims requested to avoid having a
OpenID Provider over-expose an End-User's identity information. OpenID Providers MUST NOT
provide any personal identifiable information without applicable consent.

Claims responses MAY also make use of the aggregated and/or distributed Claims structure to refer
to the original source of the subject's Claims.

Claims Metadata (such as locale or the confidence level the OpenID Provider has in the Claim for
the End-User) can be expressed as attributes within the UserInfo object, but are outside the scope
of this document. These types of Claims are best described by the trust framework the Clients and
OpenID Providers operate within. It is up to the Client to assess the level of confidence provided

6.4 Claims Request§

6.5 Claims Response§

6.6 Claims Metadata§

by the OpenID Provider or the trust framework, per Claim. Expressing or evaluating such
confidence is beyond the scope of this profile.

In order to provide a source, including integrity and optionally confidentiality, an OpenID Provider
SHOULD be able to provide aggregated or support distributed Claims. The signee of such
aggregated or distributed Claims implies the source and can support in assessing the level
confidence or quality of the Claim.

Data minimization is an essential concept in trust frameworks and federations exchanging End-
User identity information for government applications. The design of this profile takes into
consideration mechanisms to protect the End-User's government identity information and activity
from unintentional exposure.

Pairwise Subject identifiers MUST be supported by the OpenID Providers for frameworks where
subjects should not be traceable or linkable across Clients by their Subject ID. This prevents
situations where an End-User may inadvertently be assigned a universal government identifier.

Request Claims using the claim parameter MUST be supported by OpenID Providers to ensure
that only the data the Client explicitly requests is provided in the UserInfo response or ID Token.
This prevents situations where a Client may only require a partial set of Claims, but receives (and
is therefore exposed to) a full set of Claims. For example, if a Client only needs an identifier and
the persons legal age, the OpenID Provider MUST NOT send the Client the full user name and birth
date. Similarly, broad attribute requests through the scope parameter, such as profile SHOULD
NOT be used.

All Clients MUST apply the concept of data minimization. As a result, a Client MUST NOT request
any more identifiers, attributes or other Claims than strictly necessary. Additionally, Clients
SHOULD ensure they minimize the scope and audience they request, use and forward. This
principle applies to both to usage at the Client as well as forwarded Access Tokens in a Service
Intermediation scenario. Token Exchange [RFC8693] SHOULD be used to request Access Tokens
with a minimal scope and audience.

7. Considerations§

7.1 Privacy considerations§

Note that per-instance registration of Native Clients can increase the risk of Client -- and thus
End-User -- observability and traceability. This because the client_id is unique, can be
linked to an individual and may be observed. The client_id SHOULD be considered and
treated as sensitive data in case per-instance registration is applied. Although the client_id
will be protected by TLS, it may be exposed at the Client itself or the OpenID Provider or
elsewhere. As mitigating measure, implementations MAY use encrypted request objects and
tokens. OpenID Providers SHOULD assign unpredictable Client Identifiers in case of per-
instance registration for Native Clients, in order to mitigate guessing and (cross Client and
cross audience) linkability of Client Identifiers.

In order to provide end-to-end security and privacy, identifiers and attributes SHOULD be
encrypted from the providing source to the ultimate intended recipient. This can be accomplished
by either encrypting entire response messages and tokens or by using aggregated or distributed
Claims (see Section 5.6.2 of [OpenID.Core]). Applying end-to-end encryption is strongly
RECOMMENDED for both the BSN (Burgerservicenummer, the Dutch citizen ID) and sensitive
attributes.

Despite the mechanisms enforced by this profile, the operational circumstances may allow these
controls to be relaxed in a specific context. For example, if a bilateral agreement between two
agencies legally entitles usage of citizen identifiers, then the Pairwise Pseudonymous Identifier
requirement may be relaxed. In cases where all Clients are entitled to process Claims associated to
a subject at an OpenID Provider, the Claims request requirement may be relaxed.

The reasons for relaxing the controls that support data minimization are outside the scope of this
profile.

Implementations of this profile or any form of access to a service, MUST make a risk assessment or
security classification for that service and the information disclosed. It is strongly
RECOMMENDED to follow the guide 'Assurance level for digital service provision' [SG.LoA].
Particularly when implementing for higher levels of assurance (e.g. eIDAS "high" or "substantial"),
requirements specified as SHOULD (NOT) or (NOT) RECOMMENDED in this profile are more
pertinent to implement accordingly. In line with the scope of the "Assurance level for digital
service provision" guide, information and services classified as "state secret" (Dutch:
"staatsgeheim") are out of scope for implementations under this profile.

An OpenID Provider MUST use a distinct Client Identifier (client_id) and registration for each
unique Client. This in particular applies to public Clients, these registrations MUST NOT be shared
with confidential Clients, even if they are operated by the same organisation. Distinct registrations
MAY be applied to different versions of (native and browser-based public) Clients as well. This will

7.2 Security considerations§

allow a form of support for version management, noting that this can not be considered a very
reliable method from a security point of view.

Refresh Tokens SHOULD only be applied and enabled when a functional need exists. Support for
Refresh Tokens SHOULD therefore be disabled by default. Refresh Tokens for confidential Clients
MUST be sender-constrained by the issuing OpenID Provider. How the OP accomplishes this is
implementation specific, suggestions can be found in [OAuth2.1], Section 6.1. Using Refresh
Tokens in combination with public Clients SHOULD be avoided when possible. If a specific
scenario does call for usage of Refresh Tokens with public Clients, Refresh Tokens MUST rotate on
each use with a limited valid lifetime.

All transactions MUST be protected in transit by TLS as described in BCP195 [RFC7525]. In
addition, all compliant implementations MUST apply the IT Security Guidelines for TLS by the
Dutch NCSC [SG.TLS]. Implementations SHOULD only implement settings and options indicated
as "good", SHOULD NOT use any settings with a status "phase out" and MUST NOT use any
setting with a status "insufficient" in these security guidelines or future updates thereof.

Implementations MUST implement 'HTTP Strict Transport Security', as specified in [RFC6797].

All Clients MUST conform to applicable recommendations found in the 'Security Considerations'
sections of [RFC6749] and those found in 'OAuth 2.0 Threat Model and Security Considerations'
[RFC6819]. For all Tokens, the 'JSON Web Token Best Current Practices' [RFC8725] SHOULD be
applied.

All Clients MUST apply cross-site request forgery (CSRF) counter measures. Clients can leverage
the OpenID Connect nonce and OAuth2 state parameters to do so. A Client MUST utilize one or
more of these parameters to verify an Authentication Response matches with the Authentication
Request sent. After first use, the Client SHOULD invalidate the parameter so it can be used only
once (see [OAuth2.Security], Section 4.2.4).

In case Clients are relying on and communicating with multiple OpenID Providers (and/or OAuth2
Authorization Servers), Clients MUST implement countermeasures to prevent mix-up attacks.
Clients SHOULD at least use distinct redirect URIs for each OpenID Provider / Authorization
Server, or alternatively validate the issuer (iss) in the response (ID Token) matches the initiating
Authentication Request (see [RFC8252], Section 8.10 and [OAuth2.Security], Section 2.1 and
4.4.2).

Security of OpenID Connect and OAuth 2.0 is significantly based on the application of
cryptography. Herein the choice of algorithms is important for both security as well as
interoperability. This section lists relevant choices of algorithms for all messages and tokens.

7.2.1 Algorithms§

For signing of messages and tokens, implementations:

MUST support RS256.

SHOULD support PS256; usage of PS256 is RECOMMENDED over RS256.

MAY support other algorithms, provided they are at least equally secure as RS256.

MUST NOT support algorithms that are less secure than RS256.

For asymmetric encryption, in particular encryption of content encryption keys, implementations:

MUST support RSA-OAEP.

SHOULD support RSA-OAEP-256.

MAY support other algorithms, provided they are at least equally secure as RSA-OAEP.

MUST NOT support algorithms that are less secure than RSA-OAEP.

For symmetric encryption, implementations:

MUST support A256GCM.

MAY support other algorithms, provided they are at least equally secure as A256GCM.

MUST NOT support algorithms that are less secure than A256GCM.

In addition to proper selection and configuration of algorithms, implementations MUST ensure to
use a cryptographically secure (pseudo)random generator. Administrators and implementations
MUST apply industry best practices for key management of cryptographic keys. This includes best
practices for selection of applicable key length as applicable for the relevant algorithm(s) selected.

This profile was created using published, finalized specifications and standards as basis. Some
relevant new documents are under development at the time of writing. As this profile does not use
any draft documents as basis, these cannot be included. However, we want to attend readers to
these developments and for them to take into account that future updates to this profile may
incorporate the resulting standards and specifications. Furthermore we would like encourage
readers to follow relevant developments.

One functionality that is widely used in the (semi-)governmental sector but is not included in the
initial version of this profile specification is Service Intermediation. This scenario is sometimes

7.3 Future updates§

7.3.1 Service Intermediation§

also refered to as identity propagation. Examples of Service Intermediation scenario's include
portals, API aggregators and Clients with enhanched or automated assistence for consuming
services.

Service Intermediation is applicable when the Service Provider does not directly interact with the
End-User, but delegates this responsibility to a Service Intermediary. The Service Intermediary
therefore interacts with the OpenID Provider for End-User authentication, with the service offered
by the Serivce Provider in scope of the Authentication Request. The Service Provider can now rely
on a token from the OpenID Provider received via the Service Intermediary. Note that there is
interaction with OAuth2, the Service Provider acts as Resource Server.

Such a Service Intermediary can intermediate a single service offered by a single Service Provider
(e.g. an accounting app (service) that has an option to submit a tax declaration) or it can aggregate
multiple Services offered by multiple Service Providers using intermediation (e.g. an app that
aggregates your health information stored at several health organisations).

It is anticipated that support for Service Intermediation will be added in a later version of this
profile; when it will, the following should be considered:

Service Intermediaries should be able to obtain Claims and subject identifiers for different
intermediated Services via different interactions with the OpenID Provider, with End-User
consent but without the need of complete re-authentication.

Service Intermediaries are generally not allowed to access Claims and subject identifiers.
Hence, the use of pairwise and encrypted subject identifiers and Claims is usually required.

Service Providers control which Service Intermediaries they support, specifically when
confidential information is involved. Hence, Client Registration with the OpenID Provider
must be established such that Service Intermediaries can only intermediate (and request
Claims and subject identifiers for) Services that they are authorized for. A potential solution
direction could be the use of Proof-of-Possession Key Semantics, as described in [RFC7800].

This profile acknowledges that federations are widely in use, in particular among
(semi-)governmental and public domain orgranisations. However, no specific support or
requirements for federations are included in this version of this profile. The OpenID Foundation is
currently drafting a specification for explicit support of federations using OpenID Connect. Future
updates to this profile may adopt such federation specificaitons once finalized. See Federation at
the OpenID Foundation.

7.3.2 Federations§

7.3.3 Other features

https://openid.net/tag/federation/
https://openid.net/tag/federation/

The following overview lists RFC and BCP documents being drafted by the OAuth 2.0 working
group of the Internet Engineering Task Force (IETF) and work-in-progress by the OpenID
Foundation. Future updates to this profile are likely to seek usage of and interoperability with these
specifications once finalized.

[OAuth2.JWT]

An RFC for Access Tokens in JWT format is being drafted in the OAuth 2.0 working group at
IETF.

[OAuth2.JAR]

An RFC for Secured (signed and/or encrypted) Authorization Requests is being drafted in the
OAuth 2.0 working group at IETF. Most of the practices described in this RFC are already
part of the OpenID Connect Core specification.

[OAuth2.RAR]

An RFC that introduces a request parameter authorization_details, which allows for
more expressive Authentication Requests than those possible with the scope parameter, is
being drafted in the OAuth 2.0 working group at IETF.

[OAuth2.PAR]

An RFC that introduces an endpoint to which Clients can push Authorization Requests via a
direct POST request to an Authorizaton Server, prior to forwarding the End-User with a
request_uri referencing the request to the Authorization Server, is being drafted in the
OAuth 2.0 working group at IETF. The practices described in this RFC are already part of the
OpenID Connect Core specification.

[OAuth2.Security]

A Best Current Practice document that extends the OAuth 2.0 Security Threat Model and
provides security recommendations to address security challenges in OAuth 2.0 is being
drafted in the OAuth 2.0 working group at IETF.

[OAuth2.Browser-Based-Apps]

A Best Current Practice document that details security considerations and best practices to be
taken into account when implementing browser-based applications that use OAuth 2.0 is
being drafted in the OAuth 2.0 working group at IETF.

[OAuth2.1]

§

An effort to consolidate and simplify OAuth 2.0 by adding and removing functionality of the
core OAuth 2.0 specification and by incorporating several RFCs and BCPs that were built
upon OAuth 2.0.

[OpenID.Federation]

Work by the OpenID Foundation to support federations of OpenID Providers and relying
Service Providers, by publishing aggregated metadata in a specified format.

This section is non-normative.

The following terms that are specific to this profile or its functional context are used throughout
this specification:

Representation

The action of one party acting on behalf of another party through delegated authority, which
was given voluntary or based on legal grounds. Both parties can either be natural or juridical
persons.

Representation Relationship

When one party represents another party, both parties have a Representation Relationship.
Typically a Representation Relationship needs to be formally documented in order to be
useable in automated processes, resulting in a statement or registration of the Representation
Relationship.

eIDAS

eIDAS (Electronic Identification, Authentication and Trust Services) is an EU regulation on
electronic identification and trust services for electronic transactions in the European Union.

The technology described in this specification was made available from contributions from various
sources, including members of the OpenID Foundation (OIDF), the Internet Engineering Task
Force (IETF) and others.

8. Glossary§

8.1 Notices§

Special thanks go to the following people for their involvement in the working group and for their
contributions to the specification:

Anouschka Biekman (Logius), Arjen Monster (Gemeente Den Haag), Arnout van Velzen
(Logius/RV), Bart Geesink (Surfnet), Bart Kerver (VWS), Bob te Riele (RVIG), Dennis Reumer
(RVO), Dolf Smits (Belastingdienst), Elsbeth Bodde (iShare), Erwin Reinout (Kennisnet), Frank
van Es (Logius), Frans de Kok (Logius/ETD), Jan Geert Koops (Dictu), Jan Jaap Zoutendijk
(CIV), Jeroen de Ruig (Lost Lemon), Joost van Dijk (Surfnet), Joris Joosten (VZVZ/MedMij),
Lakeshia Tjin Liep Shie (Logius), Mark Nijmeijer (Justid), Martin Borgman (Kadaster), Peter
Haasnoot (Logius/CvS), Peter Kooi (Belastingdienst), Pieter Heering (Logius), Redouan Ahaloui
(Forum Standaardisatie), Remco Schaar (Logius), Rob Post (RVIG), Robin Gelhard (Forum
Standaardisatie), Timen Olthof (VNG), and Victor den Bak (iShare).

As well as sections marked as non-normative, all authoring guidelines, diagrams, examples, and
notes in this specification are non-normative. Everything else in this specification is normative.

The key words MAY, MUST, MUST NOT, NOT RECOMMENDED, OPTIONAL,
RECOMMENDED, REQUIRED, SHALL, SHALL NOT, SHOULD, and SHOULD NOT in this
document are to be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only
when, they appear in all capitals, as shown here.

Figure 1 Authorization Code Flow

8.2 Acknowledgements§

9. Conformance§

10. List of Figures§

https://datatracker.ietf.org/doc/html/bcp14

[CORS]
Cross-Origin Resource Sharing. Anne van Kesteren. W3C. 2 June 2020. W3C
Recommendation. URL: https://www.w3.org/TR/cors/

[CSP]
Content Security Policy Level 3. Mike West; Antonio Sartori. W3C. 4 September 2023. W3C
Working Draft. URL: https://www.w3.org/TR/CSP3/

[OAuth2.NLGov]
NL GOV Assurance profile for OAuth 2.0. F. Terpstra; J. van Gelder. Logius. july 2020. URL:
https://gitdocumentatie.logius.nl/publicatie/api/oauth/

[OpenID.Core]
OpenID Connect Core 1.0. N. Sakimura; J. Bradley; M. B. Jones; B. de Medeiros; C.
Mortimore. The OpenID Foundation. 2014. URL: https://openid.net/specs/openid-connect-
core-1_0.html

[OpenID.Discovery]
OpenID Connect Discovery 1.0. N. Sakimura; J. Bradley; M. Jones; E. Jay. The OpenID
Foundation. 2014. URL: https://openid.net/specs/openid-connect-discovery-1_0.html

[OpenID.Dynamic-Registration]
OpenID Connect Dynamic Client Registration 1.0. N. Sakimura; J. Bradley; M. Jones. The
OpenID Foundation. 2014. URL: https://openid.net/specs/openid-connect-registration-

A. Index§

A.1 Terms defined by this specification§

A.2 Terms defined by reference§

B. References§

B.1 Normative references§

https://www.w3.org/TR/cors/
https://www.w3.org/TR/cors/
https://www.w3.org/TR/CSP3/
https://www.w3.org/TR/CSP3/
https://gitdocumentatie.logius.nl/publicatie/api/oauth/
https://gitdocumentatie.logius.nl/publicatie/api/oauth/
https://openid.net/specs/openid-connect-core-1_0.html
https://openid.net/specs/openid-connect-core-1_0.html
https://openid.net/specs/openid-connect-core-1_0.html
https://openid.net/specs/openid-connect-discovery-1_0.html
https://openid.net/specs/openid-connect-discovery-1_0.html
https://openid.net/specs/openid-connect-registration-1_0.html
https://openid.net/specs/openid-connect-registration-1_0.html

1_0.html

[OpenID.iGov]
International Government Assurance Profile (iGov) for OpenID Connect 1.0. M. Varley; P.
Grassi. The OpenID Foundation. 2018. URL: https://openid.net/specs/openid-igov-openid-
connect-1_0.html

[RFC2119]
Key words for use in RFCs to Indicate Requirement Levels. S. Bradner. IETF. March 1997.
Best Current Practice. URL: https://www.rfc-editor.org/rfc/rfc2119

[RFC2616]
Hypertext Transfer Protocol -- HTTP/1.1. R. Fielding; J. Gettys; J. Mogul; H. Frystyk; L.
Masinter; P. Leach; T. Berners-Lee. IETF. June 1999. Draft Standard. URL: https://www.rfc-
editor.org/rfc/rfc2616

[RFC3986]
Uniform Resource Identifier (URI): Generic Syntax. T. Berners-Lee; R. Fielding; L. Masinter.
IETF. January 2005. Internet Standard. URL: https://www.rfc-editor.org/rfc/rfc3986

[RFC6749]
The OAuth 2.0 Authorization Framework. D. Hardt, Ed.. IETF. October 2012. Proposed
Standard. URL: https://www.rfc-editor.org/rfc/rfc6749

[RFC6750]
The OAuth 2.0 Authorization Framework: Bearer Token Usage. M. Jones; D. Hardt. IETF.
October 2012. Proposed Standard. URL: https://www.rfc-editor.org/rfc/rfc6750

[RFC6797]
HTTP Strict Transport Security (HSTS). J. Hodges; C. Jackson; A. Barth. IETF. November
2012. Proposed Standard. URL: https://www.rfc-editor.org/rfc/rfc6797

[RFC6819]
OAuth 2.0 Threat Model and Security Considerations. T. Lodderstedt, Ed.; M. McGloin; P.
Hunt. IETF. January 2013. Informational. URL: https://www.rfc-editor.org/rfc/rfc6819

[RFC7009]
OAuth 2.0 Token Revocation. T. Lodderstedt, Ed.; S. Dronia; M. Scurtescu. IETF. August
2013. Proposed Standard. URL: https://www.rfc-editor.org/rfc/rfc7009

[RFC7234]
Hypertext Transfer Protocol (HTTP/1.1): Caching. R. Fielding, Ed.; M. Nottingham, Ed.; J.
Reschke, Ed.. IETF. June 2014. Proposed Standard. URL:
https://httpwg.org/specs/rfc7234.html

[RFC7515]
JSON Web Signature (JWS). M. Jones; J. Bradley; N. Sakimura. IETF. May 2015. Proposed
Standard. URL: https://www.rfc-editor.org/rfc/rfc7515

[RFC7516]
JSON Web Encryption (JWE). M. Jones; J. Hildebrand. IETF. May 2015. Proposed Standard.
URL: https://www.rfc-editor.org/rfc/rfc7516

https://openid.net/specs/openid-connect-registration-1_0.html
https://openid.net/specs/openid-igov-openid-connect-1_0.html
https://openid.net/specs/openid-igov-openid-connect-1_0.html
https://openid.net/specs/openid-igov-openid-connect-1_0.html
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc2616
https://www.rfc-editor.org/rfc/rfc2616
https://www.rfc-editor.org/rfc/rfc2616
https://www.rfc-editor.org/rfc/rfc3986
https://www.rfc-editor.org/rfc/rfc3986
https://www.rfc-editor.org/rfc/rfc6749
https://www.rfc-editor.org/rfc/rfc6749
https://www.rfc-editor.org/rfc/rfc6750
https://www.rfc-editor.org/rfc/rfc6750
https://www.rfc-editor.org/rfc/rfc6797
https://www.rfc-editor.org/rfc/rfc6797
https://www.rfc-editor.org/rfc/rfc6819
https://www.rfc-editor.org/rfc/rfc6819
https://www.rfc-editor.org/rfc/rfc7009
https://www.rfc-editor.org/rfc/rfc7009
https://httpwg.org/specs/rfc7234.html
https://httpwg.org/specs/rfc7234.html
https://www.rfc-editor.org/rfc/rfc7515
https://www.rfc-editor.org/rfc/rfc7515
https://www.rfc-editor.org/rfc/rfc7516
https://www.rfc-editor.org/rfc/rfc7516

[RFC7517]
JSON Web Key (JWK). M. Jones. IETF. May 2015. Proposed Standard. URL: https://www.rfc-
editor.org/rfc/rfc7517

[RFC7519]
JSON Web Token (JWT). M. Jones; J. Bradley; N. Sakimura. IETF. May 2015. Proposed
Standard. URL: https://www.rfc-editor.org/rfc/rfc7519

[RFC7523]
JSON Web Token (JWT) Profile for OAuth 2.0 Client Authentication and Authorization
Grants. M. Jones; B. Campbell; C. Mortimore. IETF. May 2015. Proposed Standard. URL:
https://www.rfc-editor.org/rfc/rfc7523

[RFC7525]
Recommendations for Secure Use of Transport Layer Security (TLS) and Datagram Transport
Layer Security (DTLS). Y. Sheffer; R. Holz; P. Saint-Andre. IETF. May 2015. Best Current
Practice. URL: https://www.rfc-editor.org/rfc/rfc7525

[RFC7591]
OAuth 2.0 Dynamic Client Registration Protocol. J. Richer, Ed.; M. Jones; J. Bradley; M.
Machulak; P. Hunt. IETF. July 2015. Proposed Standard. URL: https://www.rfc-
editor.org/rfc/rfc7591

[RFC7592]
OAuth 2.0 Dynamic Client Registration Management Protocol. J. Richer, Ed.; M. Jones; J.
Bradley; M. Machulak. IETF. July 2015. Experimental. URL: https://www.rfc-
editor.org/rfc/rfc7592

[RFC7636]
Proof Key for Code Exchange by OAuth Public Clients. N. Sakimura, Ed.; J. Bradley; N.
Agarwal. IETF. September 2015. Proposed Standard. URL: https://www.rfc-
editor.org/rfc/rfc7636

[RFC7662]
OAuth 2.0 Token Introspection. J. Richer, Ed.. IETF. October 2015. Proposed Standard. URL:
https://www.rfc-editor.org/rfc/rfc7662

[RFC7800]
Proof-of-Possession Key Semantics for JSON Web Tokens (JWTs). M. Jones; J. Bradley; H.
Tschofenig. IETF. April 2016. Proposed Standard. URL: https://www.rfc-
editor.org/rfc/rfc7800

[RFC8174]
Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words. B. Leiba. IETF. May 2017.
Best Current Practice. URL: https://www.rfc-editor.org/rfc/rfc8174

[RFC8252]
OAuth 2.0 for Native Apps. W. Denniss; J. Bradley. IETF. October 2017. Best Current
Practice. URL: https://www.rfc-editor.org/rfc/rfc8252

https://www.rfc-editor.org/rfc/rfc7517
https://www.rfc-editor.org/rfc/rfc7517
https://www.rfc-editor.org/rfc/rfc7517
https://www.rfc-editor.org/rfc/rfc7519
https://www.rfc-editor.org/rfc/rfc7519
https://www.rfc-editor.org/rfc/rfc7523
https://www.rfc-editor.org/rfc/rfc7523
https://www.rfc-editor.org/rfc/rfc7523
https://www.rfc-editor.org/rfc/rfc7525
https://www.rfc-editor.org/rfc/rfc7525
https://www.rfc-editor.org/rfc/rfc7525
https://www.rfc-editor.org/rfc/rfc7591
https://www.rfc-editor.org/rfc/rfc7591
https://www.rfc-editor.org/rfc/rfc7591
https://www.rfc-editor.org/rfc/rfc7592
https://www.rfc-editor.org/rfc/rfc7592
https://www.rfc-editor.org/rfc/rfc7592
https://www.rfc-editor.org/rfc/rfc7636
https://www.rfc-editor.org/rfc/rfc7636
https://www.rfc-editor.org/rfc/rfc7636
https://www.rfc-editor.org/rfc/rfc7662
https://www.rfc-editor.org/rfc/rfc7662
https://www.rfc-editor.org/rfc/rfc7800
https://www.rfc-editor.org/rfc/rfc7800
https://www.rfc-editor.org/rfc/rfc7800
https://www.rfc-editor.org/rfc/rfc8174
https://www.rfc-editor.org/rfc/rfc8174
https://www.rfc-editor.org/rfc/rfc8252
https://www.rfc-editor.org/rfc/rfc8252

[RFC8414]
OAuth 2.0 Authorization Server Metadata. M. Jones; N. Sakimura; J. Bradley. IETF. June
2018. Proposed Standard. URL: https://www.rfc-editor.org/rfc/rfc8414

[RFC8485]
Vectors of Trust. J. Richer, Ed.; L. Johansson. IETF. October 2018. Proposed Standard. URL:
https://www.rfc-editor.org/rfc/rfc8485

[RFC8693]
OAuth 2.0 Token Exchange. M. Jones; A. Nadalin; B. Campbell, Ed.; J. Bradley; C.
Mortimore. IETF. January 2020. Proposed Standard. URL: https://www.rfc-
editor.org/rfc/rfc8693

[RFC8705]
OAuth 2.0 Mutual-TLS Client Authentication and Certificate-Bound Access Tokens. B.
Campbell; J. Bradley; N. Sakimura; T. Lodderstedt. IETF. February 2020. Proposed Standard.
URL: https://www.rfc-editor.org/rfc/rfc8705

[RFC8725]
JSON Web Token Best Current Practices. Y. Sheffer; D. Hardt; M. Jones. IETF. February
2020. Best Current Practice. URL: https://www.rfc-editor.org/rfc/rfc8725

[SG.LoA]
Assurance level for digital service provision. . The Standardisation Forum (NL). September
2017. URL: https://www.forumstandaardisatie.nl/sites/default/files/BFS/4-
basisinformatie/publicaties/Assurance-levels-for-digital-service-provision.pdf

[SG.TLS]
IT Security Guidelines for Transport Layer Security (TLS) v2.1. . NCSC. 19-01-2021. URL:
https://english.ncsc.nl/publications/publications/2021/january/19/it-security-guidelines-for-
transport-layer-security-2.1

[SRI]
Subresource Integrity. Devdatta Akhawe; Frederik Braun; Francois Marier; Joel Weinberger.
W3C. 23 June 2016. W3C Recommendation. URL: https://www.w3.org/TR/SRI/

[eIDAS.SAML]
eIDAS SAML Message Format. eIDAS Coorperation Network. URL:
https://ec.europa.eu/digital-building-
blocks/wikis/download/attachments/467109280/eIDAS%20SAML%20Message%20Format%
20v.1.2%20Final.pdf

[LO.GBA]
Logisch ontwerp BRP. . RvIG. July 2023. URL: https://www.rvig.nl/logisch-ontwerp-brp

B.2 Informative references§

https://www.rfc-editor.org/rfc/rfc8414
https://www.rfc-editor.org/rfc/rfc8414
https://www.rfc-editor.org/rfc/rfc8485
https://www.rfc-editor.org/rfc/rfc8485
https://www.rfc-editor.org/rfc/rfc8693
https://www.rfc-editor.org/rfc/rfc8693
https://www.rfc-editor.org/rfc/rfc8693
https://www.rfc-editor.org/rfc/rfc8705
https://www.rfc-editor.org/rfc/rfc8705
https://www.rfc-editor.org/rfc/rfc8725
https://www.rfc-editor.org/rfc/rfc8725
https://www.forumstandaardisatie.nl/sites/default/files/BFS/4-basisinformatie/publicaties/Assurance-levels-for-digital-service-provision.pdf
https://www.forumstandaardisatie.nl/sites/default/files/BFS/4-basisinformatie/publicaties/Assurance-levels-for-digital-service-provision.pdf
https://www.forumstandaardisatie.nl/sites/default/files/BFS/4-basisinformatie/publicaties/Assurance-levels-for-digital-service-provision.pdf
https://english.ncsc.nl/publications/publications/2021/january/19/it-security-guidelines-for-transport-layer-security-2.1
https://english.ncsc.nl/publications/publications/2021/january/19/it-security-guidelines-for-transport-layer-security-2.1
https://english.ncsc.nl/publications/publications/2021/january/19/it-security-guidelines-for-transport-layer-security-2.1
https://www.w3.org/TR/SRI/
https://www.w3.org/TR/SRI/
https://ec.europa.eu/digital-building-blocks/wikis/download/attachments/467109280/eIDAS%20SAML%20Message%20Format%20v.1.2%20Final.pdf
https://ec.europa.eu/digital-building-blocks/wikis/download/attachments/467109280/eIDAS%20SAML%20Message%20Format%20v.1.2%20Final.pdf
https://ec.europa.eu/digital-building-blocks/wikis/download/attachments/467109280/eIDAS%20SAML%20Message%20Format%20v.1.2%20Final.pdf
https://ec.europa.eu/digital-building-blocks/wikis/download/attachments/467109280/eIDAS%20SAML%20Message%20Format%20v.1.2%20Final.pdf
https://www.rvig.nl/logisch-ontwerp-brp
https://www.rvig.nl/logisch-ontwerp-brp

[OAuth2.1]
OAuth 2.1 Working draft. D. Hardt; A. Parecki; T. Lodderstedt. IETF OAuth Working Group.
April 2020. URL: https://tools.ietf.org/html/draft-parecki-oauth-v2-1

[OAuth2.Browser-Based-Apps]
OAuth 2.0 for Browser-Based Apps. A. Parecki; D. Waite. IETF OAuth Working Group.
Internet-Draft. URL: https://tools.ietf.org/html/draft-ietf-oauth-browser-based-apps

[OAuth2.JAR]
The OAuth 2.0 Authorization Framework: JWT Secured Authorization Request (JAR). N.
Sakimura; J. Bradley. IETF OAuth Working Group. Internet-Draft. URL:
https://tools.ietf.org/html/draft-ietf-oauth-jwsreq

[OAuth2.JWT]
JSON Web Token (JWT) Profile for OAuth 2.0 Access Tokens. V. Bertocci. IETF OAuth
Working Group. Internet-Draft. URL: https://tools.ietf.org/html/draft-ietf-oauth-access-token-
jwt

[OAuth2.PAR]
OAuth 2.0 Pushed Authorization Requests. T. Lodderstedt; B. Campbell; N. Sakimura; D.
Tonge; F. Skokan. IETF OAuth Working Group. Internet-Draft. URL:
https://tools.ietf.org/html/draft-lodderstedt-oauth-par

[OAuth2.RAR]
OAuth 2.0 Rich Authorization Requests. T. Lodderstedt; J. Richer; B. Campbell. IETF OAuth
Working Group. Internet-Draft. URL: https://tools.ietf.org/html/draft-lodderstedt-oauth-rar

[OAuth2.Security]
OAuth 2.0 Security Best Current Practice. T. Lodderstedt; J. Bradley; A. Labunets; D. Fett.
IETF OAuth Working Group. Internet-Draft. URL: https://tools.ietf.org/html/draft-ietf-oauth-
security-topics

[OpenID.Federation]
OpenID Connect Federation 1.0 - draft 12. R. Hedberg; M. Jones; A. Solberg; S. Gulliksson;
J. Bradley. June 30, 2020. URL: https://openid.net/specs/openid-connect-federation-1_0-
12.html

[OpenID.NLGov]
NL GOV Assurance profile for OpenID Connect 1.0. R. Schaar; F. van Es; J. Joosten; J. G.
Koops. Logius. 2021. URL: https://logius.gitlab.io/oidc/

↑

https://tools.ietf.org/html/draft-parecki-oauth-v2-1
https://tools.ietf.org/html/draft-parecki-oauth-v2-1
https://tools.ietf.org/html/draft-ietf-oauth-browser-based-apps
https://tools.ietf.org/html/draft-ietf-oauth-browser-based-apps
https://tools.ietf.org/html/draft-ietf-oauth-jwsreq
https://tools.ietf.org/html/draft-ietf-oauth-jwsreq
https://tools.ietf.org/html/draft-ietf-oauth-access-token-jwt
https://tools.ietf.org/html/draft-ietf-oauth-access-token-jwt
https://tools.ietf.org/html/draft-ietf-oauth-access-token-jwt
https://tools.ietf.org/html/draft-lodderstedt-oauth-par
https://tools.ietf.org/html/draft-lodderstedt-oauth-par
https://tools.ietf.org/html/draft-lodderstedt-oauth-rar
https://tools.ietf.org/html/draft-lodderstedt-oauth-rar
https://tools.ietf.org/html/draft-ietf-oauth-security-topics
https://tools.ietf.org/html/draft-ietf-oauth-security-topics
https://tools.ietf.org/html/draft-ietf-oauth-security-topics
https://openid.net/specs/openid-connect-federation-1_0-12.html
https://openid.net/specs/openid-connect-federation-1_0-12.html
https://openid.net/specs/openid-connect-federation-1_0-12.html
https://logius.gitlab.io/oidc/
https://logius.gitlab.io/oidc/

